{"id":"https://openalex.org/W4385805008","doi":"https://doi.org/10.1109/cvprw59228.2023.00054","title":"A Three-Stage Framework with Reliable Sample Pool for Long-Tailed Classification","display_name":"A Three-Stage Framework with Reliable Sample Pool for Long-Tailed Classification","publication_year":2023,"publication_date":"2023-06-01","ids":{"openalex":"https://openalex.org/W4385805008","doi":"https://doi.org/10.1109/cvprw59228.2023.00054"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvprw59228.2023.00054","pdf_url":null,"source":{"id":"https://openalex.org/S4363607748","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5053306734","display_name":"Feng Cai","orcid":"https://orcid.org/0009-0008-3131-1377"},"institutions":[{"id":"https://openalex.org/I24943067","display_name":"Fudan University","ror":"https://ror.org/013q1eq08","country_code":"CN","type":"education","lineage":["https://openalex.org/I24943067"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Feng Cai","raw_affiliation_strings":["Fudan University"],"affiliations":[{"raw_affiliation_string":"Fudan University","institution_ids":["https://openalex.org/I24943067"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038637903","display_name":"Keyu Wu","orcid":"https://orcid.org/0000-0001-8493-0712"},"institutions":[{"id":"https://openalex.org/I24943067","display_name":"Fudan University","ror":"https://ror.org/013q1eq08","country_code":"CN","type":"education","lineage":["https://openalex.org/I24943067"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Keyu Wu","raw_affiliation_strings":["Fudan University"],"affiliations":[{"raw_affiliation_string":"Fudan University","institution_ids":["https://openalex.org/I24943067"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100405762","display_name":"Haipeng Wang","orcid":"https://orcid.org/0000-0003-1912-7143"},"institutions":[{"id":"https://openalex.org/I24943067","display_name":"Fudan University","ror":"https://ror.org/013q1eq08","country_code":"CN","type":"education","lineage":["https://openalex.org/I24943067"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Haipeng Wang","raw_affiliation_strings":["Fudan University"],"affiliations":[{"raw_affiliation_string":"Fudan University","institution_ids":["https://openalex.org/I24943067"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5029738971","display_name":"Feng Wang","orcid":"https://orcid.org/0000-0001-7553-3184"},"institutions":[{"id":"https://openalex.org/I24943067","display_name":"Fudan University","ror":"https://ror.org/013q1eq08","country_code":"CN","type":"education","lineage":["https://openalex.org/I24943067"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Feng Wang","raw_affiliation_strings":["Fudan University"],"affiliations":[{"raw_affiliation_string":"Fudan University","institution_ids":["https://openalex.org/I24943067"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":68},"biblio":{"volume":"33","issue":null,"first_page":"479","last_page":"486"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11038","display_name":"Advanced SAR Imaging Techniques","score":0.9802,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9744,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.528017},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4210919},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.41376305}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7110427},{"id":"https://openalex.org/C183115368","wikidata":"https://www.wikidata.org/wiki/Q856577","display_name":"Weighting","level":2,"score":0.6775146},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6756513},{"id":"https://openalex.org/C87360688","wikidata":"https://www.wikidata.org/wiki/Q740686","display_name":"Synthetic aperture radar","level":2,"score":0.6470345},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.5423513},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.528017},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.47039044},{"id":"https://openalex.org/C71139939","wikidata":"https://www.wikidata.org/wiki/Q910194","display_name":"Modal","level":2,"score":0.4641636},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46038887},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4210919},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.41590604},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.41376305},{"id":"https://openalex.org/C10929652","wikidata":"https://www.wikidata.org/wiki/Q7279985","display_name":"Radar imaging","level":3,"score":0.41210127},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38596487},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.34628737},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3355775},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.15258113},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C188027245","wikidata":"https://www.wikidata.org/wiki/Q750446","display_name":"Polymer chemistry","level":1,"score":0.0},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvprw59228.2023.00054","pdf_url":null,"source":{"id":"https://openalex.org/S4363607748","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320309612","funder_display_name":"Natural Science Foundation of Shanghai","award_id":null},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W1673310716","https://openalex.org/W1686810756","https://openalex.org/W2103614420","https://openalex.org/W2194775991","https://openalex.org/W2410591237","https://openalex.org/W2531327146","https://openalex.org/W2798381792","https://openalex.org/W2921393178","https://openalex.org/W2939196249","https://openalex.org/W2963351448","https://openalex.org/W2963691377","https://openalex.org/W2970941190","https://openalex.org/W2982083293","https://openalex.org/W2995197345","https://openalex.org/W2997580736","https://openalex.org/W3010512657","https://openalex.org/W3034328552","https://openalex.org/W3034369739","https://openalex.org/W3034601242","https://openalex.org/W3034711780","https://openalex.org/W3044057088","https://openalex.org/W3096688134","https://openalex.org/W3108105109","https://openalex.org/W3110148193","https://openalex.org/W3158299003","https://openalex.org/W3167251133","https://openalex.org/W3177200443","https://openalex.org/W3205196764","https://openalex.org/W4292787468","https://openalex.org/W4312281439","https://openalex.org/W4312885504","https://openalex.org/W4318586159"],"related_works":["https://openalex.org/W3016428515","https://openalex.org/W2917196883","https://openalex.org/W2747205507","https://openalex.org/W2585813813","https://openalex.org/W2545123933","https://openalex.org/W2160730947","https://openalex.org/W2096748030","https://openalex.org/W2042726296","https://openalex.org/W2041414401","https://openalex.org/W1908997176"],"abstract_inverted_index":{"Synthetic":[0],"Aperture":[1],"Radar":[2],"(SAR)":[3],"imagery":[4],"presents":[5],"a":[6,27,59,67,72,98,127],"promising":[7],"solution":[8],"for":[9,75,81],"acquiring":[10],"Earth":[11],"surface":[12],"information":[13],"regardless":[14],"of":[15,34,61,130,135,148],"weather":[16],"and":[17,58,84,112,120,132],"daylight.":[18],"However,":[19],"the":[20,32,44,52,105,114,118,138,142,149],"SAR":[21,53],"dataset":[22,54],"is":[23],"commonly":[24],"characterized":[25],"by":[26],"long-tailed":[28,56],"distribution":[29,57],"due":[30],"to":[31,46,91,103],"scarcity":[33],"samples":[35],"from":[36],"infrequent":[37],"categories.":[38],"In":[39],"this":[40],"work,":[41],"we":[42,65,96],"extend":[43],"problem":[45],"aerial":[47],"view":[48],"object":[49],"classification":[50],"in":[51,108,145],"with":[55],"plethora":[60],"negative":[62],"samples.":[63],"Specifically,":[64],"propose":[66],"three-stage":[68],"approach":[69],"that":[70],"employs":[71],"ResNet101":[73],"backbone":[74],"feature":[76],"extraction,":[77],"Class-balanced":[78],"Focal":[79],"Loss":[80],"class-level":[82],"re-weighting,":[83],"reliable":[85],"pseudo-labels":[86],"generated":[87],"through":[88],"semi-supervised":[89],"learning":[90],"improve":[92],"model":[93],"performance.":[94],"Moreover,":[95],"introduce":[97],"Reliable":[99],"Sample":[100],"Pool":[101],"(RSP)":[102],"enhance":[104],"model's":[106],"confidence":[107],"predicting":[109],"in-distribution":[110],"data":[111],"mitigate":[113],"domain":[115],"gap":[116],"between":[117],"labeled":[119],"unlabeled":[121],"sets.":[122],"The":[123],"proposed":[124],"framework":[125],"achieved":[126],"Top-1":[128],"Accuracy":[129],"63.20%":[131],"an":[133],"AUROC":[134],"0.71":[136],"on":[137],"final":[139],"dataset,":[140],"winning":[141],"first":[143],"place":[144],"track":[146],"1":[147],"PBVS":[150],"2023":[151],"Multi-modal":[152],"Aerial":[153],"View":[154],"Object":[155],"Classification":[156],"Challenge.":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385805008","counts_by_year":[],"updated_date":"2024-12-14T04:16:11.337416","created_date":"2023-08-15"}