{"id":"https://openalex.org/W4292829074","doi":"https://doi.org/10.1109/cvprw56347.2022.00089","title":"A robust non-blind deblurring method using deep denoiser prior","display_name":"A robust non-blind deblurring method using deep denoiser prior","publication_year":2022,"publication_date":"2022-06-01","ids":{"openalex":"https://openalex.org/W4292829074","doi":"https://doi.org/10.1109/cvprw56347.2022.00089"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvprw56347.2022.00089","pdf_url":null,"source":{"id":"https://openalex.org/S4363607748","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5085166013","display_name":"Yingying Fang","orcid":"https://orcid.org/0000-0001-6334-8635"},"institutions":[{"id":"https://openalex.org/I47508984","display_name":"Imperial College London","ror":"https://ror.org/041kmwe10","country_code":"GB","type":"education","lineage":["https://openalex.org/I47508984"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Yingying Fang","raw_affiliation_strings":["Imperial College London, London, United Kingdom"],"affiliations":[{"raw_affiliation_string":"Imperial College London, London, United Kingdom","institution_ids":["https://openalex.org/I47508984"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100397026","display_name":"Hao Zhang","orcid":"https://orcid.org/0000-0003-1991-119X"},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"CN","type":"education","lineage":["https://openalex.org/I177725633"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hao Zhang","raw_affiliation_strings":["The Chinese University of Hong Kong, Shatin, Hong Kong"],"affiliations":[{"raw_affiliation_string":"The Chinese University of Hong Kong, Shatin, Hong Kong","institution_ids":["https://openalex.org/I177725633"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083863808","display_name":"Hok Shing Wong","orcid":null},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"CN","type":"education","lineage":["https://openalex.org/I177725633"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hok Shing Wong","raw_affiliation_strings":["The Chinese University of Hong Kong, Shatin, Hong Kong"],"affiliations":[{"raw_affiliation_string":"The Chinese University of Hong Kong, Shatin, Hong Kong","institution_ids":["https://openalex.org/I177725633"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5059443966","display_name":"Tieyong Zeng","orcid":"https://orcid.org/0000-0002-0688-202X"},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"CN","type":"education","lineage":["https://openalex.org/I177725633"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tieyong Zeng","raw_affiliation_strings":["The Chinese University of Hong Kong, Shatin, Hong Kong"],"affiliations":[{"raw_affiliation_string":"The Chinese University of Hong Kong, Shatin, Hong Kong","institution_ids":["https://openalex.org/I177725633"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.776,"has_fulltext":false,"cited_by_count":18,"citation_normalized_percentile":{"value":0.822972,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":"734","last_page":"743"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/deblurring","display_name":"Deblurring","score":0.9815622},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.7427039},{"id":"https://openalex.org/keywords/kernel-density-estimation","display_name":"Kernel density estimation","score":0.50683385},{"id":"https://openalex.org/keywords/ringing-artifacts","display_name":"Ringing artifacts","score":0.49043462}],"concepts":[{"id":"https://openalex.org/C2777693668","wikidata":"https://www.wikidata.org/wiki/Q25053743","display_name":"Deblurring","level":5,"score":0.9815622},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.7427039},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.66869605},{"id":"https://openalex.org/C174576160","wikidata":"https://www.wikidata.org/wiki/Q1183700","display_name":"Deconvolution","level":2,"score":0.65858114},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6403708},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.6140862},{"id":"https://openalex.org/C106430172","wikidata":"https://www.wikidata.org/wiki/Q6002272","display_name":"Image restoration","level":4,"score":0.56625885},{"id":"https://openalex.org/C30044814","wikidata":"https://www.wikidata.org/wiki/Q11334452","display_name":"Blind deconvolution","level":3,"score":0.54637253},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.5441779},{"id":"https://openalex.org/C71134354","wikidata":"https://www.wikidata.org/wiki/Q458825","display_name":"Kernel density estimation","level":3,"score":0.50683385},{"id":"https://openalex.org/C17828673","wikidata":"https://www.wikidata.org/wiki/Q7334899","display_name":"Ringing artifacts","level":3,"score":0.49043462},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.47803292},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.44269133},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4302523},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.29568595},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.2915768},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.2774663},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.25068736},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.08237803},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvprw56347.2022.00089","pdf_url":null,"source":{"id":"https://openalex.org/S4363607748","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":49,"referenced_works":["https://openalex.org/W1457323852","https://openalex.org/W1546509353","https://openalex.org/W1598281290","https://openalex.org/W1901129140","https://openalex.org/W1906770428","https://openalex.org/W1930824406","https://openalex.org/W1992309968","https://openalex.org/W2025900737","https://openalex.org/W2032506791","https://openalex.org/W2036682493","https://openalex.org/W2044810215","https://openalex.org/W2121927366","https://openalex.org/W2124964692","https://openalex.org/W2130975789","https://openalex.org/W2138204001","https://openalex.org/W2147298660","https://openalex.org/W2172275395","https://openalex.org/W2331376995","https://openalex.org/W2465552163","https://openalex.org/W2474628748","https://openalex.org/W2508457857","https://openalex.org/W2556068545","https://openalex.org/W2560533888","https://openalex.org/W2613155248","https://openalex.org/W2740543610","https://openalex.org/W2741137940","https://openalex.org/W2764207251","https://openalex.org/W2776500869","https://openalex.org/W2777194773","https://openalex.org/W2777685367","https://openalex.org/W2895598217","https://openalex.org/W2955179830","https://openalex.org/W2955192444","https://openalex.org/W2963130865","https://openalex.org/W2963299521","https://openalex.org/W2963312584","https://openalex.org/W2963494934","https://openalex.org/W2963774720","https://openalex.org/W2964261957","https://openalex.org/W2966397867","https://openalex.org/W2973468176","https://openalex.org/W3002421716","https://openalex.org/W3008618604","https://openalex.org/W3034724715","https://openalex.org/W3035530631","https://openalex.org/W3100557831","https://openalex.org/W3128379922","https://openalex.org/W4236387761","https://openalex.org/W4255272544"],"related_works":["https://openalex.org/W4385800852","https://openalex.org/W3207832039","https://openalex.org/W3137059050","https://openalex.org/W2599471666","https://openalex.org/W2269775642","https://openalex.org/W2128376275","https://openalex.org/W2011719851","https://openalex.org/W199374452","https://openalex.org/W1982903217","https://openalex.org/W1504464002"],"abstract_inverted_index":{"The":[0,130],"existing":[1],"non-blind":[2,67],"deblurring":[3,58,68,158],"methods":[4],"are":[5],"mostly":[6],"susceptible":[7],"to":[8,85,104,121,155],"noise":[9,43,111],"in":[10,46,90,126,141],"the":[11,20,30,34,42,47,54,57,87,91,94,107,123,127,135,143,147,151,156],"given":[12,35,88],"blurring":[13],"kernel,":[14],"which":[15],"is":[16,37,101,119],"usually":[17],"estimated":[18],"from":[19],"observed":[21,48],"image.":[22,129],"This":[23],"will":[24],"produce":[25],"undesirable":[26],"ringing":[27],"artifacts":[28],"around":[29],"recovered":[31,128,152],"edges":[32],"when":[33],"kernel":[36,82,89],"not":[38],"accurate":[39],"enough.":[40],"Besides,":[41],"and":[44,146],"outliers":[45,108],"images":[49,153],"may":[50],"also":[51,102],"severely":[52],"degrade":[53],"performance":[55],"of":[56,93,150],"methods.":[59,159],"Considering":[60],"these":[61,72],"factors,":[62],"we":[63,79],"designed":[64],"a":[65,81],"robust":[66],"method":[69,137],"taking":[70],"all":[71],"noises":[73],"into":[74],"account.":[75],"In":[76],"this":[77],"paper,":[78],"propose":[80],"error":[83,99],"term":[84,100],"rectify":[86],"midst":[92],"deconvolution":[95],"process.":[96],"A":[97,114],"residual":[98],"introduced":[103],"deal":[105],"with":[106],"caused":[109],"by":[110],"or":[112],"saturation.":[113],"deep":[115],"learning":[116],"denoiser":[117],"prior":[118],"adopted":[120],"reserve":[122],"fine":[124],"textures":[125],"experiments":[131],"show":[132],"clearly":[133],"that":[134],"proposed":[136],"achieves":[138],"remarkable":[139],"progress":[140],"both":[142],"visual":[144],"quality":[145],"numerical":[148],"results":[149],"compared":[154],"state-of-the-art":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4292829074","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":9},{"year":2022,"cited_by_count":2}],"updated_date":"2025-01-18T06:12:37.038362","created_date":"2022-08-24"}