{"id":"https://openalex.org/W3046394451","doi":"https://doi.org/10.1109/cvprw50498.2020.00445","title":"A Point Light Source Interference Removal Method for Image Dehazing","display_name":"A Point Light Source Interference Removal Method for Image Dehazing","publication_year":2020,"publication_date":"2020-06-01","ids":{"openalex":"https://openalex.org/W3046394451","doi":"https://doi.org/10.1109/cvprw50498.2020.00445","mag":"3046394451"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvprw50498.2020.00445","pdf_url":null,"source":{"id":"https://openalex.org/S4363607748","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5084038184","display_name":"Yanyang Yan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yanyang Yan","raw_affiliation_strings":["SKLOIS, IIE, CAS"],"affiliations":[{"raw_affiliation_string":"SKLOIS, IIE, CAS","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101544525","display_name":"Shengdong Zhang","orcid":"https://orcid.org/0000-0002-3805-785X"},"institutions":[{"id":"https://openalex.org/I37461747","display_name":"Wuhan University","ror":"https://ror.org/033vjfk17","country_code":"CN","type":"education","lineage":["https://openalex.org/I37461747"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shengdong Zhang","raw_affiliation_strings":["Wuhan University"],"affiliations":[{"raw_affiliation_string":"Wuhan University","institution_ids":["https://openalex.org/I37461747"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026939095","display_name":"Mingye Ju","orcid":"https://orcid.org/0000-0003-4378-3781"},"institutions":[{"id":"https://openalex.org/I41198531","display_name":"Nanjing University of Posts and Telecommunications","ror":"https://ror.org/043bpky34","country_code":"CN","type":"education","lineage":["https://openalex.org/I41198531"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Mingye Ju","raw_affiliation_strings":["Nanjing University of Posts and Telecommunications"],"affiliations":[{"raw_affiliation_string":"Nanjing University of Posts and Telecommunications","institution_ids":["https://openalex.org/I41198531"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057999649","display_name":"Wenqi Ren","orcid":"https://orcid.org/0000-0001-5481-653X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wenqi Ren","raw_affiliation_strings":["SKLOIS, IIE, CAS"],"affiliations":[{"raw_affiliation_string":"SKLOIS, IIE, CAS","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100431257","display_name":"Rui Wang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rui Wang","raw_affiliation_strings":["SKLOIS, IIE, CAS"],"affiliations":[{"raw_affiliation_string":"SKLOIS, IIE, CAS","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5030187602","display_name":"Yuanfang Guo","orcid":"https://orcid.org/0000-0003-4592-8083"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuanfang Guo","raw_affiliation_strings":["School of Computer Science and Engineering, Beihang University"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, Beihang University","institution_ids":["https://openalex.org/I82880672"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.215,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.421685,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":73,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"3817","last_page":"3825"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/haze","display_name":"Haze","score":0.64371014}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7662994},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.6791912},{"id":"https://openalex.org/C79974267","wikidata":"https://www.wikidata.org/wiki/Q643546","display_name":"Haze","level":2,"score":0.64371014},{"id":"https://openalex.org/C32022120","wikidata":"https://www.wikidata.org/wiki/Q797225","display_name":"Interference (communication)","level":3,"score":0.6404154},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.6194616},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.60912913},{"id":"https://openalex.org/C184652730","wikidata":"https://www.wikidata.org/wiki/Q2357982","display_name":"Attenuation","level":2,"score":0.5665144},{"id":"https://openalex.org/C2777402240","wikidata":"https://www.wikidata.org/wiki/Q6783436","display_name":"Masking (illustration)","level":2,"score":0.54337394},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.4746973},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.43517095},{"id":"https://openalex.org/C106430172","wikidata":"https://www.wikidata.org/wiki/Q6002272","display_name":"Image restoration","level":4,"score":0.4105301},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.38409513},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.36881322},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.27477154},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.22138488},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.170634},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1382643},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0668734},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0},{"id":"https://openalex.org/C153349607","wikidata":"https://www.wikidata.org/wiki/Q36649","display_name":"Visual arts","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvprw50498.2020.00445","pdf_url":null,"source":{"id":"https://openalex.org/S4363607748","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W1985066542","https://openalex.org/W1990592195","https://openalex.org/W2002299629","https://openalex.org/W2003709967","https://openalex.org/W2028990532","https://openalex.org/W2035773017","https://openalex.org/W2063971703","https://openalex.org/W2065002911","https://openalex.org/W2081418206","https://openalex.org/W2109616376","https://openalex.org/W2114867966","https://openalex.org/W2121880036","https://openalex.org/W2125676229","https://openalex.org/W2128254161","https://openalex.org/W2128926607","https://openalex.org/W2156936307","https://openalex.org/W2206123561","https://openalex.org/W2256362396","https://openalex.org/W2519481857","https://openalex.org/W2739097844","https://openalex.org/W2800244499","https://openalex.org/W2802524726","https://openalex.org/W2810033989","https://openalex.org/W2896973508","https://openalex.org/W2897177665","https://openalex.org/W2899642385","https://openalex.org/W2912104034","https://openalex.org/W2939502864","https://openalex.org/W2962754725","https://openalex.org/W2963928582","https://openalex.org/W2967584026","https://openalex.org/W2976715267","https://openalex.org/W2979261558","https://openalex.org/W2984757678","https://openalex.org/W2985045886","https://openalex.org/W2990176100","https://openalex.org/W3013338555"],"related_works":["https://openalex.org/W3093404388","https://openalex.org/W3044651058","https://openalex.org/W3005795805","https://openalex.org/W2152301642","https://openalex.org/W2132132164","https://openalex.org/W2130228941","https://openalex.org/W2080860377","https://openalex.org/W2077803140","https://openalex.org/W2002009170","https://openalex.org/W1974878844"],"abstract_inverted_index":{"Single":[0],"image":[1],"haze":[2,239],"removal":[3,39],"has":[4],"been":[5],"a":[6,34],"challenging":[7],"problem":[8],"and":[9,104,143,155,169,177,188,196,237],"the":[10,13,26,44,48,55,59,73,81,97,115,119,122,136,144,157,164,174,185,200,205,222],"performance":[11],"of":[12,72,80,84,121,204],"most":[14],"existing":[15],"dehazing":[16,111,140,148,181,225],"methods":[17,154],"is":[18,91,99,232],"degraded":[19],"when":[20,46],"point":[21,35,60],"light":[22,36,61,85,102],"sources":[23,62,103],"exist":[24],"in":[25],"hazy":[27],"image.":[28],"In":[29],"this":[30],"paper,":[31],"we":[32,134,210,217],"propose":[33],"source":[37],"interference":[38],"method":[40,141,149],"(PLiSIR)":[41],"to":[42,52,110,128,131,171,184,198,219,227],"reduce":[43],"interferences":[45],"estimating":[47],"atmospheric":[49,123,175],"light.":[50,124],"According":[51],"our":[53,212],"observation,":[54],"pixel":[56,98],"intensity":[57],"around":[58],"can":[63,107,166],"be":[64,108],"modeled":[65],"approximately":[66],"by":[67,101,113],"Gaussian":[68],"distribution.":[69],"The":[70],"locations":[71],"interfered":[74,116],"pixels":[75],"are":[76],"obtained":[77],"reasonably":[78],"regardless":[79],"specific":[82],"number":[83],"sources.":[86],"A":[87],"binary":[88],"masking":[89],"map":[90],"then":[92],"created":[93],"for":[94,234],"distinguishing":[95],"whether":[96],"affected":[100],"thus":[105,178],"PLiSIR":[106,130,165,192],"adopted":[109],"algorithms":[112],"removing":[114],"pixels,":[117],"during":[118],"estimation":[120],"To":[125],"demonstrate":[126],"how":[127],"apply":[129],"different":[132],"algorithms,":[133],"select":[135],"dark":[137],"channel":[138],"prior":[139,147],"(DCP)":[142],"color":[145],"attenuation":[146],"(CAP)":[150],"as":[151],"two":[152],"carrier":[153],"introduce":[156],"adaptations":[158],"accordingly.":[159],"Experimental":[160],"results":[161,182],"indicate":[162],"that":[163],"assist":[167],"DCP":[168,187,195,214],"CAP":[170,189,197],"better":[172,180],"estimate":[173],"light,":[176],"generate":[179],"compared":[183],"original":[186],"methods.":[190],"Moreover,":[191],"also":[193],"helps":[194],"simplify":[199],"parameter":[201],"adjustment":[202],"process":[203],"guided":[206],"filter.":[207],"At":[208],"last,":[209],"compare":[211],"modified":[213],"approach":[215,230],"(which":[216],"refer":[218],"PLiSIR-DCP)":[220],"with":[221],"state-of-the-art":[223],"nighttime":[224,238],"algorithm":[226],"present":[228],"an":[229],"which":[231],"suitable":[233],"both":[235],"daytime":[236],"removal.":[240]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3046394451","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":2}],"updated_date":"2025-01-03T10:24:18.140732","created_date":"2020-08-07"}