{"id":"https://openalex.org/W2140223865","doi":"https://doi.org/10.1109/cvprw.2009.5204255","title":"Action recognition via local descriptors and holistic features","display_name":"Action recognition via local descriptors and holistic features","publication_year":2009,"publication_date":"2009-06-01","ids":{"openalex":"https://openalex.org/W2140223865","doi":"https://doi.org/10.1109/cvprw.2009.5204255","mag":"2140223865"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvprw.2009.5204255","pdf_url":null,"source":{"id":"https://openalex.org/S4393918233","display_name":"IEEE Computer Society Conference on Computer Vision and Pattern Recognition workshops","issn_l":"2160-7508","issn":["2160-7508"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5032067597","display_name":"Xinghua Sun","orcid":"https://orcid.org/0000-0003-0621-1469"},"institutions":[{"id":"https://openalex.org/I36399199","display_name":"Nanjing University of Science and Technology","ror":"https://ror.org/00xp9wg62","country_code":"CN","type":"funder","lineage":["https://openalex.org/I36399199"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"None Xinghua Sun","raw_affiliation_strings":["Nanjing University of Science and Technology,,,Nanjing,,China"],"affiliations":[{"raw_affiliation_string":"Nanjing University of Science and Technology,,,Nanjing,,China","institution_ids":["https://openalex.org/I36399199"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5036262724","display_name":"Mingyu Chen","orcid":"https://orcid.org/0000-0001-5113-754X"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"funder","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"None Mingyu Chen","raw_affiliation_strings":["Carnegie-Mellon University, Pittsburgh, Pa., USA#TAB#"],"affiliations":[{"raw_affiliation_string":"Carnegie-Mellon University, Pittsburgh, Pa., USA#TAB#","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5103099928","display_name":"Alexander G. Hauptmann","orcid":"https://orcid.org/0000-0003-2123-0684"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"funder","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Alexander Hauptmann","raw_affiliation_strings":["Carnegie-Mellon University, Pittsburgh, Pa., USA#TAB#"],"affiliations":[{"raw_affiliation_string":"Carnegie-Mellon University, Pittsburgh, Pa., USA#TAB#","institution_ids":["https://openalex.org/I74973139"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":15.949,"has_fulltext":false,"cited_by_count":154,"citation_normalized_percentile":{"value":0.943189,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":"8","issue":null,"first_page":"58","last_page":"65"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":0.9949,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/scale-invariant-feature-transform","display_name":"Scale-invariant feature transform","score":0.68447125},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.570729},{"id":"https://openalex.org/keywords/action-recognition","display_name":"Action Recognition","score":0.52877176}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7243307},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7036292},{"id":"https://openalex.org/C61265191","wikidata":"https://www.wikidata.org/wiki/Q767770","display_name":"Scale-invariant feature transform","level":3,"score":0.68447125},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6551087},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.570729},{"id":"https://openalex.org/C2780791683","wikidata":"https://www.wikidata.org/wiki/Q846785","display_name":"Action (physics)","level":2,"score":0.54795265},{"id":"https://openalex.org/C2987834672","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Action recognition","level":3,"score":0.52877176},{"id":"https://openalex.org/C92423082","wikidata":"https://www.wikidata.org/wiki/Q132146","display_name":"Zernike polynomials","level":3,"score":0.51275814},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.49225107},{"id":"https://openalex.org/C126042441","wikidata":"https://www.wikidata.org/wiki/Q1324888","display_name":"Frame (networking)","level":2,"score":0.4693725},{"id":"https://openalex.org/C104114177","wikidata":"https://www.wikidata.org/wiki/Q79782","display_name":"Motion (physics)","level":2,"score":0.43762305},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.07356322},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C165699331","wikidata":"https://www.wikidata.org/wiki/Q461533","display_name":"Wavefront","level":2,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvprw.2009.5204255","pdf_url":null,"source":{"id":"https://openalex.org/S4393918233","display_name":"IEEE Computer Society Conference on Computer Vision and Pattern Recognition workshops","issn_l":"2160-7508","issn":["2160-7508"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Affordable and clean energy","score":0.88,"id":"https://metadata.un.org/sdg/7"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W1534763723","https://openalex.org/W1572333066","https://openalex.org/W1910567995","https://openalex.org/W2003260632","https://openalex.org/W2024868105","https://openalex.org/W2034328688","https://openalex.org/W2096691069","https://openalex.org/W2100157495","https://openalex.org/W2101194540","https://openalex.org/W2102204450","https://openalex.org/W2103140817","https://openalex.org/W2103822353","https://openalex.org/W2106094637","https://openalex.org/W2110142955","https://openalex.org/W2113800095","https://openalex.org/W2113856781","https://openalex.org/W2116931983","https://openalex.org/W2118572719","https://openalex.org/W2119799051","https://openalex.org/W2120544738","https://openalex.org/W2129418188","https://openalex.org/W2135658380","https://openalex.org/W2136853139","https://openalex.org/W2138105460","https://openalex.org/W2142194269","https://openalex.org/W2146634731","https://openalex.org/W2146776177","https://openalex.org/W2147689624","https://openalex.org/W2151103935","https://openalex.org/W2153635508","https://openalex.org/W2158169396","https://openalex.org/W2159498975","https://openalex.org/W2161192203","https://openalex.org/W2163973188","https://openalex.org/W2164612452","https://openalex.org/W2165715280","https://openalex.org/W2166070055","https://openalex.org/W2533739470","https://openalex.org/W3120421331","https://openalex.org/W3141200356"],"related_works":["https://openalex.org/W3160617640","https://openalex.org/W2547138831","https://openalex.org/W2183108721","https://openalex.org/W2108333036","https://openalex.org/W2073465494","https://openalex.org/W2067788074","https://openalex.org/W2061580049","https://openalex.org/W2049930962","https://openalex.org/W1997638723","https://openalex.org/W1989910702"],"abstract_inverted_index":{"In":[0],"this":[1],"paper":[2],"we":[3],"propose":[4],"a":[5],"unified":[6,43],"action":[7,39,103],"recognition":[8,104],"framework":[9,44],"fusing":[10],"local":[11,21,59],"descriptors":[12,22],"and":[13,23,31,51,63,92,109,120,124,154],"holistic":[14,24,84],"features.":[15],"The":[16,41],"motivation":[17],"is":[18,45,87,95,138,146],"that":[19,134],"the":[20,35,93,107,118],"features":[25],"emphasize":[26],"different":[27,36],"aspects":[28],"of":[29,38,58,83],"actions":[30],"are":[32],"suitable":[33],"for":[34],"types":[37],"databases.":[40],"proposed":[42,127,136],"based":[46,69,88,96],"on":[47,70,89,97,106],"frame":[48],"differencing,":[49],"bag-of-words":[50],"feature":[52,66],"fusion.":[53],"We":[54,75,101,116],"extract":[55,80],"two":[56,81],"kinds":[57,82],"descriptors,":[60,67],"i.e.":[61],"2D":[62,71],"3D":[64],"SIFT":[65,72],"both":[68],"interest":[73],"points.":[74],"apply":[76,117],"Zernike":[77],"moments":[78],"to":[79,152,156],"features,":[85],"one":[86],"single":[90],"frames":[91],"other":[94,142],"motion":[98],"energy":[99],"image.":[100],"perform":[102],"experiments":[105],"KTH":[108],"Weizmann":[110],"databases,":[111],"using":[112],"Support":[113],"Vector":[114],"Machines.":[115],"leave-one-out":[119],"pseudo":[121],"leave-N-out":[122],"setups,":[123],"compare":[125],"our":[126,135,144],"approach":[128,137,145],"with":[129,141],"state-of-the-art":[130],"results.":[131],"Experiments":[132],"show":[133],"effective.":[139],"Compared":[140],"approaches":[143],"more":[147,149],"robust,":[148],"versatile,":[150],"easier":[151],"compute":[153],"simpler":[155],"understand.":[157]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2140223865","counts_by_year":[{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":5},{"year":2018,"cited_by_count":4},{"year":2017,"cited_by_count":10},{"year":2016,"cited_by_count":15},{"year":2015,"cited_by_count":11},{"year":2014,"cited_by_count":15},{"year":2013,"cited_by_count":16},{"year":2012,"cited_by_count":28}],"updated_date":"2025-02-19T09:35:10.027312","created_date":"2016-06-24"}