{"id":"https://openalex.org/W4386075693","doi":"https://doi.org/10.1109/cvpr52729.2023.00900","title":"MoDAR: Using Motion Forecasting for 3D Object Detection in Point Cloud Sequences","display_name":"MoDAR: Using Motion Forecasting for 3D Object Detection in Point Cloud Sequences","publication_year":2023,"publication_date":"2023-06-01","ids":{"openalex":"https://openalex.org/W4386075693","doi":"https://doi.org/10.1109/cvpr52729.2023.00900"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr52729.2023.00900","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2306.03206","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5035693739","display_name":"Yingwei Li","orcid":"https://orcid.org/0000-0002-2683-8632"},"institutions":[{"id":"https://openalex.org/I4210145145","display_name":"Nomor Research (Germany)","ror":"https://ror.org/04727qm97","country_code":"DE","type":"company","lineage":["https://openalex.org/I4210145145"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Yingwei Li","raw_affiliation_strings":["Waymo LLC"],"affiliations":[{"raw_affiliation_string":"Waymo LLC","institution_ids":["https://openalex.org/I4210145145"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027357870","display_name":"Charles R. Qi","orcid":null},"institutions":[{"id":"https://openalex.org/I4210145145","display_name":"Nomor Research (Germany)","ror":"https://ror.org/04727qm97","country_code":"DE","type":"company","lineage":["https://openalex.org/I4210145145"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Charles R. Qi","raw_affiliation_strings":["Waymo LLC"],"affiliations":[{"raw_affiliation_string":"Waymo LLC","institution_ids":["https://openalex.org/I4210145145"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000117252","display_name":"Yin Zhou","orcid":"https://orcid.org/0000-0001-7536-7753"},"institutions":[{"id":"https://openalex.org/I4210145145","display_name":"Nomor Research (Germany)","ror":"https://ror.org/04727qm97","country_code":"DE","type":"company","lineage":["https://openalex.org/I4210145145"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Yin Zhou","raw_affiliation_strings":["Waymo LLC"],"affiliations":[{"raw_affiliation_string":"Waymo LLC","institution_ids":["https://openalex.org/I4210145145"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100387431","display_name":"Chenxi Liu","orcid":"https://orcid.org/0000-0003-3613-1662"},"institutions":[{"id":"https://openalex.org/I4210145145","display_name":"Nomor Research (Germany)","ror":"https://ror.org/04727qm97","country_code":"DE","type":"company","lineage":["https://openalex.org/I4210145145"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Chenxi Liu","raw_affiliation_strings":["Waymo LLC"],"affiliations":[{"raw_affiliation_string":"Waymo LLC","institution_ids":["https://openalex.org/I4210145145"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5081024054","display_name":"Dragomir Anguelov","orcid":null},"institutions":[{"id":"https://openalex.org/I4210145145","display_name":"Nomor Research (Germany)","ror":"https://ror.org/04727qm97","country_code":"DE","type":"company","lineage":["https://openalex.org/I4210145145"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Dragomir Anguelov","raw_affiliation_strings":["Waymo LLC"],"affiliations":[{"raw_affiliation_string":"Waymo LLC","institution_ids":["https://openalex.org/I4210145145"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.676,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.615626,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":90},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11211","display_name":"3D Surveying and Cultural Heritage","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/1907","display_name":"Geology"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11211","display_name":"3D Surveying and Cultural Heritage","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/1907","display_name":"Geology"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10719","display_name":"3D Shape Modeling and Analysis","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/visibility","display_name":"Visibility","score":0.44065824},{"id":"https://openalex.org/keywords/sequence","display_name":"Sequence (biology)","score":0.42409286}],"concepts":[{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.76489383},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7532923},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.7139026},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6269514},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.5766139},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.5386022},{"id":"https://openalex.org/C13662910","wikidata":"https://www.wikidata.org/wiki/Q193139","display_name":"Trajectory","level":2,"score":0.5367206},{"id":"https://openalex.org/C123403432","wikidata":"https://www.wikidata.org/wiki/Q654068","display_name":"Visibility","level":2,"score":0.44065824},{"id":"https://openalex.org/C2778112365","wikidata":"https://www.wikidata.org/wiki/Q3511065","display_name":"Sequence (biology)","level":2,"score":0.42409286},{"id":"https://openalex.org/C2779960059","wikidata":"https://www.wikidata.org/wiki/Q7113681","display_name":"Overhead (engineering)","level":2,"score":0.41733134},{"id":"https://openalex.org/C121684516","wikidata":"https://www.wikidata.org/wiki/Q7600677","display_name":"Computer graphics (images)","level":1,"score":0.32450128},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.17037168},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.09887186},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C1276947","wikidata":"https://www.wikidata.org/wiki/Q333","display_name":"Astronomy","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr52729.2023.00900","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2306.03206","pdf_url":"http://arxiv.org/pdf/2306.03206","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2306.03206","pdf_url":"http://arxiv.org/pdf/2306.03206","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":60,"referenced_works":["https://openalex.org/W2105090634","https://openalex.org/W2118945932","https://openalex.org/W2229637417","https://openalex.org/W2293349265","https://openalex.org/W2558294288","https://openalex.org/W2798965597","https://openalex.org/W2897529137","https://openalex.org/W2904140919","https://openalex.org/W2905173465","https://openalex.org/W2914821954","https://openalex.org/W2949708697","https://openalex.org/W2956985883","https://openalex.org/W2963083779","https://openalex.org/W2963120444","https://openalex.org/W2963400571","https://openalex.org/W2963721253","https://openalex.org/W2963727135","https://openalex.org/W2964062501","https://openalex.org/W2968296999","https://openalex.org/W2970259716","https://openalex.org/W2988715931","https://openalex.org/W3034236957","https://openalex.org/W3034295100","https://openalex.org/W3034681945","https://openalex.org/W3034782805","https://openalex.org/W3035172746","https://openalex.org/W3035346742","https://openalex.org/W3035360167","https://openalex.org/W3035461736","https://openalex.org/W3035574168","https://openalex.org/W3036853234","https://openalex.org/W3107212734","https://openalex.org/W3114753236","https://openalex.org/W3122151369","https://openalex.org/W3125605478","https://openalex.org/W3127743092","https://openalex.org/W3156216502","https://openalex.org/W3167095230","https://openalex.org/W3169575318","https://openalex.org/W3170030651","https://openalex.org/W3171377125","https://openalex.org/W3172477795","https://openalex.org/W3175563878","https://openalex.org/W3176888779","https://openalex.org/W3204875639","https://openalex.org/W3208394352","https://openalex.org/W3213288297","https://openalex.org/W3214950490","https://openalex.org/W3217335336","https://openalex.org/W4214763741","https://openalex.org/W4225986494","https://openalex.org/W4287118690","https://openalex.org/W4287373991","https://openalex.org/W4312307873","https://openalex.org/W4312420906","https://openalex.org/W4312564076","https://openalex.org/W4312916565","https://openalex.org/W4313024968","https://openalex.org/W4313064206","https://openalex.org/W4383108743"],"related_works":["https://openalex.org/W598185802","https://openalex.org/W4280562100","https://openalex.org/W4226107239","https://openalex.org/W4200176076","https://openalex.org/W2954738200","https://openalex.org/W2392812199","https://openalex.org/W2361471170","https://openalex.org/W2355516524","https://openalex.org/W2025616642","https://openalex.org/W1954972543"],"abstract_inverted_index":{"Occluded":[0],"and":[1,6,44,116],"long-range":[2],"objects":[3],"are":[4],"ubiquitous":[5],"challenging":[7],"for":[8,97],"3D":[9,129],"object":[10,28,80,99,130],"detection.":[11],"Point":[12],"cloud":[13,110],"sequence":[14,49],"data":[15,50],"provide":[16],"unique":[17],"opportunities":[18],"to":[19,71,85,124],"improve":[20],"such":[21],"cases,":[22],"as":[23,65,90],"an":[24],"occluded":[25],"or":[26,35],"distant":[27],"can":[29,51,120],"be":[30,53,122],"observed":[31],"from":[32,82,100,149],"different":[33],"viewpoints":[34],"gets":[36],"better":[37],"visibility":[38],"over":[39],"time.":[40],"However,":[41],"the":[42,117,134,159],"efficiency":[43],"effectiveness":[45],"in":[46],"encoding":[47],"longterm":[48],"still":[52],"improved.":[54],"In":[55],"this":[56],"work,":[57],"we":[58],"propose":[59],"MoDAR,":[60],"using":[61,146],"motion":[62,147],"forecasting":[63,148],"outputs":[64],"a":[66,86,91,101,104],"type":[67],"of":[68,93,111,158],"virtual":[69,94,118],"modality,":[70],"augment":[72],"LiDAR":[73],"point":[74,109],"clouds.":[75],"The":[76],"MoDAR":[77],"modality":[78],"propagates":[79],"information":[81],"temporal":[83],"contexts":[84],"target":[87],"frame,":[88],"represented":[89],"set":[92],"points,":[95],"one":[96],"each":[98],"waypoint":[102],"on":[103,133],"forecasted":[105],"trajectory.":[106],"A":[107],"fused":[108],"both":[112],"raw":[113],"sensor":[114],"points":[115,119],"then":[121],"fed":[123],"any":[125],"off-the-shelf":[126],"point-cloud":[127],"based":[128],"detector.":[131],"Evaluated":[132],"Waymo":[135],"Open":[136],"Dataset,":[137],"our":[138],"method":[139],"significantly":[140],"improves":[141],"prior":[142],"art":[143],"detectors":[144],"by":[145],"extra-long":[150],"sequences":[151],"(e.g.":[152],"18":[153],"seconds),":[154],"achieving":[155],"new":[156],"state":[157],"arts,":[160],"while":[161],"not":[162],"adding":[163],"much":[164],"computation":[165],"overhead.":[166]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386075693","counts_by_year":[{"year":2024,"cited_by_count":4}],"updated_date":"2025-01-16T18:46:16.632896","created_date":"2023-08-23"}