{"id":"https://openalex.org/W4386076355","doi":"https://doi.org/10.1109/cvpr52729.2023.00118","title":"3D Human Keypoints Estimation from Point Clouds in the Wild without Human Labels","display_name":"3D Human Keypoints Estimation from Point Clouds in the Wild without Human Labels","publication_year":2023,"publication_date":"2023-06-01","ids":{"openalex":"https://openalex.org/W4386076355","doi":"https://doi.org/10.1109/cvpr52729.2023.00118"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr52729.2023.00118","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2306.04745","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004346711","display_name":"Zhenzhen Weng","orcid":"https://orcid.org/0009-0004-1108-4155"},"institutions":[{"id":"https://openalex.org/I97018004","display_name":"Stanford University","ror":"https://ror.org/00f54p054","country_code":"US","type":"funder","lineage":["https://openalex.org/I97018004"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zhenzhen Weng","raw_affiliation_strings":["Stanford University"],"affiliations":[{"raw_affiliation_string":"Stanford University","institution_ids":["https://openalex.org/I97018004"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5107933652","display_name":"Alexander S. Gorban","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Alexander S. Gorban","raw_affiliation_strings":["Waymo"],"affiliations":[{"raw_affiliation_string":"Waymo","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019481782","display_name":"Jingwei Ji","orcid":"https://orcid.org/0000-0002-9527-8296"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jingwei Ji","raw_affiliation_strings":["Waymo"],"affiliations":[{"raw_affiliation_string":"Waymo","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021900923","display_name":"Mahyar Najibi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mahyar Najibi","raw_affiliation_strings":["Waymo"],"affiliations":[{"raw_affiliation_string":"Waymo","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101024823","display_name":"Zhou Yin","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yin Zhou","raw_affiliation_strings":["Waymo"],"affiliations":[{"raw_affiliation_string":"Waymo","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5081024054","display_name":"Dragomir Anguelov","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dragomir Anguelov","raw_affiliation_strings":["Waymo"],"affiliations":[{"raw_affiliation_string":"Waymo","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.729,"has_fulltext":false,"cited_by_count":8,"citation_normalized_percentile":{"value":0.807291,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":"1158","last_page":"1167"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10719","display_name":"3D Shape Modeling and Analysis","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12290","display_name":"Human Motion and Animation","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.7981855},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.4875464},{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.4382482}],"concepts":[{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.8880297},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.82816386},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.7981855},{"id":"https://openalex.org/C2776436953","wikidata":"https://www.wikidata.org/wiki/Q5163215","display_name":"Consistency (knowledge bases)","level":2,"score":0.7138927},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6952106},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.6243311},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.57187146},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.54204905},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.4875464},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.4748326},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.45515344},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.4382482},{"id":"https://openalex.org/C8038995","wikidata":"https://www.wikidata.org/wiki/Q1152135","display_name":"Unsupervised learning","level":2,"score":0.43757024},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3433183},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10030395},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr52729.2023.00118","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2306.04745","pdf_url":"http://arxiv.org/pdf/2306.04745","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2306.04745","pdf_url":"http://arxiv.org/pdf/2306.04745","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1882958252","https://openalex.org/W1967554269","https://openalex.org/W2172156083","https://openalex.org/W2303693074","https://openalex.org/W2796426482","https://openalex.org/W2889737406","https://openalex.org/W2896457183","https://openalex.org/W2949678110","https://openalex.org/W2950180292","https://openalex.org/W2952069407","https://openalex.org/W2981556384","https://openalex.org/W2987741655","https://openalex.org/W3006267297","https://openalex.org/W3033988480","https://openalex.org/W3034487425","https://openalex.org/W3035172746","https://openalex.org/W3035524453","https://openalex.org/W3116959466","https://openalex.org/W3119708198","https://openalex.org/W3161280880","https://openalex.org/W3173248925","https://openalex.org/W3197097949","https://openalex.org/W3202611145","https://openalex.org/W4221161765","https://openalex.org/W4226016257","https://openalex.org/W4303875843","https://openalex.org/W4308615631","https://openalex.org/W4311726826","https://openalex.org/W4312270234","https://openalex.org/W4312391718","https://openalex.org/W4312433820","https://openalex.org/W4312554478","https://openalex.org/W4313182816"],"related_works":["https://openalex.org/W4317548404","https://openalex.org/W4287630611","https://openalex.org/W3094960827","https://openalex.org/W3022007134","https://openalex.org/W2797776314","https://openalex.org/W2130553454","https://openalex.org/W2033364610","https://openalex.org/W2001391081","https://openalex.org/W165115930","https://openalex.org/W10944326"],"abstract_inverted_index":{"Training":[0],"a":[1,10,106,177],"3D":[2,34,70],"human":[3,30,71,78,98,117],"keypoint":[4],"detector":[5],"from":[6,74,110,138],"point":[7,31,75],"clouds":[8,76],"in":[9,145],"supervised":[11,132],"manner":[12],"requires":[13],"large":[14,27,107,178,190],"volumes":[15,191],"of":[16,29,96,149,157,192],"high":[17],"quality":[18],"labels.":[19,79],"While":[20],"it":[21],"is":[22,36,143],"relatively":[23],"easy":[24],"to":[25,123,129,165],"capture":[26],"amounts":[28],"clouds,":[32],"annotating":[33],"key-points":[35],"expensive,":[37],"subjective,":[38],"error":[39],"prone":[40],"and":[41,94,142,187],"especially":[42],"difficult":[43],"for":[44,68,91],"long-tail":[45],"cases":[46],"(pedestrians":[47],"with":[48],"rare":[49],"poses,":[50],"scooterists,":[51],"etc.).":[52],"In":[53],"this":[54,82],"work,":[55],"we":[56,120],"propose":[57],"GC-KPL":[58,174],"-":[59],"Geometry":[60],"Consistency":[61],"inspired":[62],"Key":[63],"Point":[64],"Leaning,":[65],"an":[66],"approach":[67],"learning":[69,148],"joint":[72],"locations":[73],"without":[77,115],"We":[80,100,171],"achieve":[81,124],"by":[83,103,176],"our":[84],"novel":[85],"unsupervised":[86,140],"loss":[87],"formulations":[88],"that":[89,102,173],"account":[90],"the":[92,97,130,135,139,158,168],"structure":[93],"movement":[95],"body.":[99],"show":[101],"training":[104,108,141,160],"on":[105,153,167,184],"set":[109],"Waymo":[111],"Open":[112],"Dataset":[113],"[21]":[114],"any":[116],"annotated":[118],"keypoints,":[119,150],"are":[121],"able":[122],"reasonable":[125],"performance":[126,164],"as":[127],"compared":[128],"fully":[131],"approach.":[133],"Further,":[134],"backbone":[136],"benefits":[137],"useful":[144],"downstream":[146],"few-shot":[147],"where":[151],"fine-tuning":[152,166],"only":[154],"10":[155],"percent":[156],"labeled":[159],"data":[161],"gives":[162],"comparable":[163],"entire":[169,185],"set.":[170],"demonstrated":[172],"outperforms":[175],"margin":[179],"over":[180],"SoTA":[181],"when":[182],"trained":[183],"dataset":[186],"efficiently":[188],"leverages":[189],"unlabeled":[193],"data.":[194]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386076355","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":1}],"updated_date":"2025-04-22T21:13:02.460505","created_date":"2023-08-23"}