{"id":"https://openalex.org/W4312836647","doi":"https://doi.org/10.1109/cvpr52688.2022.01964","title":"PatchNet: A Simple Face Anti-Spoofing Framework via Fine-Grained Patch Recognition","display_name":"PatchNet: A Simple Face Anti-Spoofing Framework via Fine-Grained Patch Recognition","publication_year":2022,"publication_date":"2022-06-01","ids":{"openalex":"https://openalex.org/W4312836647","doi":"https://doi.org/10.1109/cvpr52688.2022.01964"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr52688.2022.01964","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2203.14325","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5030847121","display_name":"Chien-Yi Wang","orcid":null},"institutions":[],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Chien-Yi Wang","raw_affiliation_strings":["Microsoft AI R&D Center,Taiwan"],"affiliations":[{"raw_affiliation_string":"Microsoft AI R&D Center,Taiwan","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062616905","display_name":"Yu-Ding Lu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu-Ding Lu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055004883","display_name":"Shang-Ta Yang","orcid":null},"institutions":[],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Shang-Ta Yang","raw_affiliation_strings":["Microsoft AI R&D Center,Taiwan"],"affiliations":[{"raw_affiliation_string":"Microsoft AI R&D Center,Taiwan","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5073849580","display_name":"Shang\u2010Hong Lai","orcid":"https://orcid.org/0000-0002-5092-993X"},"institutions":[],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Shang-Hong Lai","raw_affiliation_strings":["Microsoft AI R&D Center,Taiwan"],"affiliations":[{"raw_affiliation_string":"Microsoft AI R&D Center,Taiwan","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":18.721,"has_fulltext":false,"cited_by_count":89,"citation_normalized_percentile":{"value":0.999284,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10828","display_name":"Biometric Identification and Security","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10828","display_name":"Biometric Identification and Security","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12357","display_name":"Digital Media Forensic Detection","score":0.9766,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.72215366},{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.71327114},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.6249556},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5509509},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.42532295}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8521765},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.72215366},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.71327114},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6700483},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.66498494},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.6249556},{"id":"https://openalex.org/C2779304628","wikidata":"https://www.wikidata.org/wiki/Q3503480","display_name":"Face (sociological concept)","level":2,"score":0.56567836},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5509509},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5498264},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.54331386},{"id":"https://openalex.org/C31510193","wikidata":"https://www.wikidata.org/wiki/Q1192553","display_name":"Facial recognition system","level":3,"score":0.455512},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42833173},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.42532295},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr52688.2022.01964","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.14325","pdf_url":"https://arxiv.org/pdf/2203.14325","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.14325","pdf_url":"https://arxiv.org/pdf/2203.14325","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.72,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W1982209341","https://openalex.org/W2003092530","https://openalex.org/W2163487272","https://openalex.org/W2187089797","https://openalex.org/W2194775991","https://openalex.org/W2728977829","https://openalex.org/W2952476201","https://openalex.org/W2956066883","https://openalex.org/W2962898354","https://openalex.org/W2963466847","https://openalex.org/W2963656031","https://openalex.org/W2963656735","https://openalex.org/W2969985801","https://openalex.org/W2992296732","https://openalex.org/W2998163473","https://openalex.org/W3005680577","https://openalex.org/W3021389849","https://openalex.org/W3034552680","https://openalex.org/W3035060554","https://openalex.org/W3035263140","https://openalex.org/W3035436173","https://openalex.org/W3035459165","https://openalex.org/W3092393585","https://openalex.org/W3094861582","https://openalex.org/W3103152812","https://openalex.org/W3103617265","https://openalex.org/W3108722472","https://openalex.org/W3109432287","https://openalex.org/W3116054336","https://openalex.org/W3171007011","https://openalex.org/W3188354902","https://openalex.org/W3191040240","https://openalex.org/W3205638629","https://openalex.org/W3206662929"],"related_works":["https://openalex.org/W4389116644","https://openalex.org/W4205463238","https://openalex.org/W3103844505","https://openalex.org/W2965546495","https://openalex.org/W2761785940","https://openalex.org/W259157601","https://openalex.org/W2521627374","https://openalex.org/W2153315159","https://openalex.org/W2110523656","https://openalex.org/W1482209366"],"abstract_inverted_index":{"Face":[0],"anti-spoofing":[1,75],"(FAS)":[2],"plays":[3],"a":[4,77],"critical":[5],"role":[6],"in":[7,46],"securing":[8],"face":[9,74,103],"recognition":[10,80],"systems":[11],"from":[12,101,121],"different":[13],"presentation":[14],"attacks.":[15],"Previous":[16],"works":[17,48],"leverage":[18],"auxiliary":[19],"pixel-level":[20],"supervision":[21],"and":[22,41,49,63,93,113,145,161,183,195,211],"domain":[23,196],"generalization":[24,131,197],"approaches":[25,191],"to":[26,59,117,127,149],"address":[27],"unseen":[28,170],"spoof":[29,64,135,171],"types.":[30],"However,":[31],"the":[32,88,98,110,115,130,134,139,151,164,181,189],"local":[33,122,178],"characteristics":[34],"of":[35,90,133,168,186,215],"image":[36],"captures,":[37],"i.e.,":[38],"capturing":[39,91],"devices":[40,92],"presenting":[42,94],"materials,":[43],"are":[44],"ignored":[45],"existing":[47,190],"we":[50,69,137],"argue":[51],"that":[52,163],"such":[53],"information":[54],"is":[55,166],"required":[56],"for":[57],"networks":[58],"discriminate":[60],"between":[61],"live":[62],"images.":[65,104],"In":[66,125],"this":[67],"work,":[68],"propose":[70,138],"PatchNet":[71,201],"which":[72],"reformulates":[73],"as":[76],"fine-grained":[78,182],"patch-type":[79],"problem.":[81],"To":[82],"be":[83],"specific,":[84],"our":[85,159,200],"framework":[86,202],"recognizes":[87],"combination":[89],"materials":[95],"based":[96],"on":[97,192],"patches":[99],"cropped":[100],"non-distorted":[102],"This":[105],"reformulation":[106,185],"can":[107,203],"largely":[108],"improve":[109,129],"data":[111],"variation":[112],"enforce":[114],"network":[116],"learn":[118],"discriminative":[119],"feature":[120],"capture":[123],"patterns.":[124],"addition,":[126],"further":[128],"ability":[132],"feature,":[136],"novel":[140],"Asymmetric":[141],"Margin-based":[142],"Classification":[143],"Loss":[144,148],"Self-supervised":[146],"Similarity":[147],"regularize":[150],"patch":[152],"embedding":[153],"space.":[154],"Our":[155],"experimental":[156],"results":[157],"verify":[158],"assumption":[160],"show":[162],"model":[165],"capable":[167],"recognizing":[169],"types":[172],"robustly":[173],"by":[174],"only":[175],"looking":[176],"at":[177],"regions.":[179],"Moreover,":[180],"patch-level":[184],"FAS":[187,210],"outperforms":[188],"intra-dataset,":[193],"cross-dataset,":[194],"benchmarks.":[198],"Furthermore,":[199],"enable":[204],"practical":[205],"applications":[206],"like":[207],"FewShot":[208],"Reference-based":[209],"facilitate":[212],"future":[213],"exploration":[214],"spoof-related":[216],"intrinsic":[217],"cues.":[218]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312836647","counts_by_year":[{"year":2024,"cited_by_count":49},{"year":2023,"cited_by_count":36},{"year":2022,"cited_by_count":4}],"updated_date":"2025-01-08T03:41:01.098454","created_date":"2023-01-05"}