{"id":"https://openalex.org/W4312878236","doi":"https://doi.org/10.1109/cvpr52688.2022.01156","title":"Demystifying the Neural Tangent Kernel from a Practical Perspective: Can it be trusted for Neural Architecture Search without training?","display_name":"Demystifying the Neural Tangent Kernel from a Practical Perspective: Can it be trusted for Neural Architecture Search without training?","publication_year":2022,"publication_date":"2022-06-01","ids":{"openalex":"https://openalex.org/W4312878236","doi":"https://doi.org/10.1109/cvpr52688.2022.01156"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr52688.2022.01156","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2203.14577","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5091880855","display_name":"Jisoo Mok","orcid":"https://orcid.org/0000-0001-7002-0275"},"institutions":[{"id":"https://openalex.org/I139264467","display_name":"Seoul National University","ror":"https://ror.org/04h9pn542","country_code":"KR","type":"education","lineage":["https://openalex.org/I139264467"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Jisoo Mok","raw_affiliation_strings":["Department of ECE, Seoul National University"],"affiliations":[{"raw_affiliation_string":"Department of ECE, Seoul National University","institution_ids":["https://openalex.org/I139264467"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058165461","display_name":"Byunggook Na","orcid":"https://orcid.org/0000-0002-0459-4921"},"institutions":[{"id":"https://openalex.org/I139264467","display_name":"Seoul National University","ror":"https://ror.org/04h9pn542","country_code":"KR","type":"education","lineage":["https://openalex.org/I139264467"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Byunggook Na","raw_affiliation_strings":["Department of ECE, Seoul National University"],"affiliations":[{"raw_affiliation_string":"Department of ECE, Seoul National University","institution_ids":["https://openalex.org/I139264467"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100377802","display_name":"Ji\u2010Hoon Kim","orcid":"https://orcid.org/0000-0002-5212-1686"},"institutions":[{"id":"https://openalex.org/I60922564","display_name":"Naver (South Korea)","ror":"https://ror.org/04nzrnx83","country_code":"KR","type":"company","lineage":["https://openalex.org/I60922564"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Ji-Hoon Kim","raw_affiliation_strings":["NAVER AI Lab","NAVER CLOVA"],"affiliations":[{"raw_affiliation_string":"NAVER CLOVA","institution_ids":[]},{"raw_affiliation_string":"NAVER AI Lab","institution_ids":["https://openalex.org/I60922564"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017685264","display_name":"Dongyoon Han","orcid":"https://orcid.org/0000-0002-9130-8195"},"institutions":[{"id":"https://openalex.org/I60922564","display_name":"Naver (South Korea)","ror":"https://ror.org/04nzrnx83","country_code":"KR","type":"company","lineage":["https://openalex.org/I60922564"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Dongyoon Han","raw_affiliation_strings":["NAVER AI Lab"],"affiliations":[{"raw_affiliation_string":"NAVER AI Lab","institution_ids":["https://openalex.org/I60922564"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5086877012","display_name":"Sungroh Yoon","orcid":"https://orcid.org/0000-0002-2367-197X"},"institutions":[{"id":"https://openalex.org/I139264467","display_name":"Seoul National University","ror":"https://ror.org/04h9pn542","country_code":"KR","type":"education","lineage":["https://openalex.org/I139264467"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Sungroh Yoon","raw_affiliation_strings":["AIIS, ASRI, INMC, ISRC, and Interdisciplinary Program in AI, Seoul National University","Department of ECE, Seoul National University"],"affiliations":[{"raw_affiliation_string":"Department of ECE, Seoul National University","institution_ids":["https://openalex.org/I139264467"]},{"raw_affiliation_string":"AIIS, ASRI, INMC, ISRC, and Interdisciplinary Program in AI, Seoul National University","institution_ids":["https://openalex.org/I139264467"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.888,"has_fulltext":false,"cited_by_count":9,"citation_normalized_percentile":{"value":0.822972,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":null,"issue":null,"first_page":"11851","last_page":"11860"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/initialization","display_name":"Initialization","score":0.83379376},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.63387096},{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.49176028},{"id":"https://openalex.org/keywords/performance-metric","display_name":"Performance metric","score":0.45186406}],"concepts":[{"id":"https://openalex.org/C114466953","wikidata":"https://www.wikidata.org/wiki/Q6034165","display_name":"Initialization","level":2,"score":0.83379376},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7729237},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.63387096},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.6101187},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.59368473},{"id":"https://openalex.org/C123657996","wikidata":"https://www.wikidata.org/wiki/Q12271","display_name":"Architecture","level":2,"score":0.5817577},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.49176028},{"id":"https://openalex.org/C2780898871","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Performance metric","level":2,"score":0.45186406},{"id":"https://openalex.org/C153258448","wikidata":"https://www.wikidata.org/wiki/Q1199743","display_name":"Gradient descent","level":3,"score":0.4498755},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44312242},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.43219984},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.41662234},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4093241},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1423533},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.08096263},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C153349607","wikidata":"https://www.wikidata.org/wiki/Q36649","display_name":"Visual arts","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr52688.2022.01156","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.14577","pdf_url":"https://arxiv.org/pdf/2203.14577","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2203.14577","pdf_url":"https://arxiv.org/pdf/2203.14577","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.52,"display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":51,"referenced_works":["https://openalex.org/W1533861849","https://openalex.org/W1677182931","https://openalex.org/W1836465849","https://openalex.org/W2097998348","https://openalex.org/W2553303224","https://openalex.org/W2741430497","https://openalex.org/W2771751675","https://openalex.org/W2809090039","https://openalex.org/W2885311373","https://openalex.org/W2912322140","https://openalex.org/W2949264490","https://openalex.org/W2951104886","https://openalex.org/W2951245151","https://openalex.org/W2960010704","https://openalex.org/W2963821229","https://openalex.org/W2964081807","https://openalex.org/W2964515685","https://openalex.org/W2965658867","https://openalex.org/W2978266469","https://openalex.org/W2981563141","https://openalex.org/W2996409713","https://openalex.org/W2998314487","https://openalex.org/W2999270366","https://openalex.org/W3022514193","https://openalex.org/W3034202788","https://openalex.org/W3034429256","https://openalex.org/W3034535818","https://openalex.org/W3035363850","https://openalex.org/W3035682321","https://openalex.org/W3035715446","https://openalex.org/W3040165516","https://openalex.org/W3097370814","https://openalex.org/W3097555862","https://openalex.org/W3107893198","https://openalex.org/W3118608800","https://openalex.org/W3121924028","https://openalex.org/W3128998556","https://openalex.org/W3132101459","https://openalex.org/W3166395393","https://openalex.org/W3170909332","https://openalex.org/W3173166478","https://openalex.org/W3176772026","https://openalex.org/W3192814580","https://openalex.org/W3206752670","https://openalex.org/W3217415632","https://openalex.org/W4214513763","https://openalex.org/W4287242089","https://openalex.org/W4287364634","https://openalex.org/W4289763996","https://openalex.org/W4295312788","https://openalex.org/W4300687381"],"related_works":["https://openalex.org/W4309434778","https://openalex.org/W4287868543","https://openalex.org/W4283773090","https://openalex.org/W4226299596","https://openalex.org/W3214759249","https://openalex.org/W3204184292","https://openalex.org/W3176564347","https://openalex.org/W3031039437","https://openalex.org/W2355833770","https://openalex.org/W1985458517"],"abstract_inverted_index":{"In":[0,60],"Neural":[1,35],"Architecture":[2],"Search":[3],"(NAS),":[4],"reducing":[5],"the":[6,14,34,52,73,82,86,102,109,142,167],"cost":[7],"of":[8,13,21,26,54,85,89,106,111,117,145,156,163,171,183],"architecture":[9,29,57,113],"evaluation":[10],"remains":[11],"one":[12],"most":[15],"crucial":[16],"challenges.":[17],"Among":[18],"a":[19,42,55,131,160],"plethora":[20],"efforts":[22],"to":[23,30,50,140,190],"bypass":[24],"training":[25],"each":[27],"candidate":[28],"convergence":[31],"for":[32],"evaluation,":[33],"Tangent":[36],"Kernel":[37],"(NTK)":[38],"is":[39,202],"emerging":[40],"as":[41],"promising":[43],"theoretical":[44],"framework":[45],"that":[46,68,93,177],"can":[47,69],"be":[48,70],"utilized":[49],"estimate":[51],"performance":[53,110],"neural":[56,95,151],"at":[58],"initialization.":[59],"this":[61],"work,":[62],"we":[63,91,126,175],"revisit":[64],"several":[65],"at-initialization":[66],"metrics":[67,104],"derived":[71],"from":[72],"NTK":[74],"and":[75],"reveal":[76],"their":[77],"key":[78],"short-comings.":[79],"Then,":[80],"through":[81],"empirical":[83],"analysis":[84],"time":[87],"evolution":[88],"NTK,":[90],"deduce":[92],"modern":[94,150],"architectures":[96],"exhibit":[97],"highly":[98],"non-linear":[99,122,146],"characteristics,":[100],"making":[101],"NTK-based":[103,133],"incapable":[105],"reliably":[107],"estimating":[108],"an":[112,172],"without":[114],"some":[115],"amount":[116,144,155],"training.":[118],"To":[119],"take":[120],"such":[121],"characteristics":[123],"into":[124],"account,":[125],"introduce":[127],"Label-Gradient":[128],"Alignment":[129],"(LGA),":[130],"novel":[132],"metric":[134],"whose":[135],"inherent":[136],"formulation":[137],"allows":[138],"it":[139],"capture":[141],"large":[143],"advantage":[147],"present":[148],"in":[149],"architectures.":[152],"With":[153],"minimal":[154],"training,":[157,184],"LGA":[158],"obtains":[159],"meaningful":[161],"level":[162],"rank":[164],"correlation":[165],"with":[166,180,195],"final":[168],"test":[169],"accuracy":[170],"architecture.":[173],"Lastly,":[174],"demonstrate":[176],"LGA,":[178],"complemented":[179],"few":[181],"epochs":[182],"successfully":[185],"guides":[186],"existing":[187],"search":[188,193,198],"algorithms":[189],"achieve":[191],"competitive":[192],"performances":[194],"significantly":[196],"less":[197],"cost.":[199],"The":[200],"code":[201],"available":[203],"at:":[204],"https://github.com/nute11amok/DemystifyingNTK.":[205]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312878236","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":1}],"updated_date":"2025-01-16T16:00:39.539268","created_date":"2023-01-05"}