{"id":"https://openalex.org/W4312993742","doi":"https://doi.org/10.1109/cvpr52688.2022.00743","title":"Cross-Domain Adaptive Teacher for Object Detection","display_name":"Cross-Domain Adaptive Teacher for Object Detection","publication_year":2022,"publication_date":"2022-06-01","ids":{"openalex":"https://openalex.org/W4312993742","doi":"https://doi.org/10.1109/cvpr52688.2022.00743"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr52688.2022.00743","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2111.13216","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5027472173","display_name":"Yu-Jhe Li","orcid":null},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"funder","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yu-Jhe Li","raw_affiliation_strings":["Carnegie Mellon University"],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5080137972","display_name":"Xiaoliang Dai","orcid":"https://orcid.org/0000-0003-3098-2714"},"institutions":[{"id":"https://openalex.org/I2252078561","display_name":"Meta (Israel)","ror":"https://ror.org/02388em19","country_code":"IL","type":"company","lineage":["https://openalex.org/I2252078561","https://openalex.org/I4210114444"]}],"countries":["IL"],"is_corresponding":false,"raw_author_name":"Xiaoliang Dai","raw_affiliation_strings":["Meta (Facebook)"],"affiliations":[{"raw_affiliation_string":"Meta (Facebook)","institution_ids":["https://openalex.org/I2252078561"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057482975","display_name":"Chih\u2010Yao Ma","orcid":null},"institutions":[{"id":"https://openalex.org/I2252078561","display_name":"Meta (Israel)","ror":"https://ror.org/02388em19","country_code":"IL","type":"company","lineage":["https://openalex.org/I2252078561","https://openalex.org/I4210114444"]}],"countries":["IL"],"is_corresponding":false,"raw_author_name":"Chih-Yao Ma","raw_affiliation_strings":["Meta (Facebook)"],"affiliations":[{"raw_affiliation_string":"Meta (Facebook)","institution_ids":["https://openalex.org/I2252078561"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079738111","display_name":"Yen\u2010Cheng Liu","orcid":"https://orcid.org/0000-0002-7000-3245"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"funder","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yen-Cheng Liu","raw_affiliation_strings":["Georgia Tech"],"affiliations":[{"raw_affiliation_string":"Georgia Tech","institution_ids":["https://openalex.org/I130701444"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100636629","display_name":"Kan Chen","orcid":"https://orcid.org/0000-0002-4002-7297"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kan Chen","raw_affiliation_strings":["Waymo"],"affiliations":[{"raw_affiliation_string":"Waymo","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5104472410","display_name":"Bichen Wu","orcid":"https://orcid.org/0000-0002-2649-5561"},"institutions":[{"id":"https://openalex.org/I2252078561","display_name":"Meta (Israel)","ror":"https://ror.org/02388em19","country_code":"IL","type":"company","lineage":["https://openalex.org/I2252078561","https://openalex.org/I4210114444"]}],"countries":["IL"],"is_corresponding":false,"raw_author_name":"Bichen Wu","raw_affiliation_strings":["Meta (Facebook)"],"affiliations":[{"raw_affiliation_string":"Meta (Facebook)","institution_ids":["https://openalex.org/I2252078561"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108752809","display_name":"Zijian He","orcid":null},"institutions":[{"id":"https://openalex.org/I2252078561","display_name":"Meta (Israel)","ror":"https://ror.org/02388em19","country_code":"IL","type":"company","lineage":["https://openalex.org/I2252078561","https://openalex.org/I4210114444"]}],"countries":["IL"],"is_corresponding":false,"raw_author_name":"Zijian He","raw_affiliation_strings":["Meta (Facebook)"],"affiliations":[{"raw_affiliation_string":"Meta (Facebook)","institution_ids":["https://openalex.org/I2252078561"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037322163","display_name":"Kris Kitani","orcid":"https://orcid.org/0000-0002-9389-4060"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"funder","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kris Kitani","raw_affiliation_strings":["Carnegie Mellon University"],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5048668303","display_name":"P\u00e9ter Vajda","orcid":"https://orcid.org/0000-0002-2031-4678"},"institutions":[{"id":"https://openalex.org/I2252078561","display_name":"Meta (Israel)","ror":"https://ror.org/02388em19","country_code":"IL","type":"company","lineage":["https://openalex.org/I2252078561","https://openalex.org/I4210114444"]}],"countries":["IL"],"is_corresponding":false,"raw_author_name":"Peter Vajda","raw_affiliation_strings":["Meta (Facebook)"],"affiliations":[{"raw_affiliation_string":"Meta (Facebook)","institution_ids":["https://openalex.org/I2252078561"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":19.61,"has_fulltext":false,"cited_by_count":134,"citation_normalized_percentile":{"value":0.999891,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":"7571","last_page":"7580"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.43113858}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7528305},{"id":"https://openalex.org/C55166926","wikidata":"https://www.wikidata.org/wiki/Q2892946","display_name":"Oracle","level":2,"score":0.5949142},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.56952393},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.5510682},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.44454005},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.4359625},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.4326008},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.43113858},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.36284947},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10455942},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C115903868","wikidata":"https://www.wikidata.org/wiki/Q80993","display_name":"Software engineering","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr52688.2022.00743","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2111.13216","pdf_url":"https://arxiv.org/pdf/2111.13216","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2111.13216","pdf_url":"https://arxiv.org/pdf/2111.13216","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.76,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":45,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W1731081199","https://openalex.org/W1882958252","https://openalex.org/W2031489346","https://openalex.org/W2108598243","https://openalex.org/W2159291411","https://openalex.org/W2194775991","https://openalex.org/W2279034837","https://openalex.org/W2340897893","https://openalex.org/W2565639579","https://openalex.org/W2570343428","https://openalex.org/W2593768305","https://openalex.org/W2601564443","https://openalex.org/W2605488490","https://openalex.org/W2950800384","https://openalex.org/W2953070460","https://openalex.org/W2955889502","https://openalex.org/W2962793481","https://openalex.org/W2962823940","https://openalex.org/W2963016543","https://openalex.org/W2963037989","https://openalex.org/W2963150697","https://openalex.org/W2963262989","https://openalex.org/W2964080601","https://openalex.org/W2964115968","https://openalex.org/W2964277612","https://openalex.org/W2964278684","https://openalex.org/W2968634921","https://openalex.org/W2969583814","https://openalex.org/W2979548969","https://openalex.org/W2981705647","https://openalex.org/W2989236540","https://openalex.org/W2990069979","https://openalex.org/W2990740643","https://openalex.org/W2998216033","https://openalex.org/W3010871864","https://openalex.org/W3034779842","https://openalex.org/W3035175896","https://openalex.org/W3106250896","https://openalex.org/W3121281282","https://openalex.org/W3124817676","https://openalex.org/W3130976481","https://openalex.org/W3166409449","https://openalex.org/W4293584584","https://openalex.org/W639708223"],"related_works":["https://openalex.org/W4286543385","https://openalex.org/W3187859696","https://openalex.org/W2975200075","https://openalex.org/W2970686063","https://openalex.org/W2801801420","https://openalex.org/W2732308154","https://openalex.org/W2127769904","https://openalex.org/W2095705906","https://openalex.org/W2007544051","https://openalex.org/W1988485990"],"abstract_inverted_index":{"We":[0,191],"address":[1,108],"the":[2,37,46,68,109,119,126,138,153,159,163,173,178,181,188],"task":[3],"of":[4,26],"domain":[5,15,19,25,69,100,110],"adaptation":[6],"in":[7,60,118],"object":[8,62],"detection,":[9],"where":[10],"there":[11],"is":[12,43,221],"an":[13],"obvious":[14],"gap":[16],"between":[17,152],"a":[18,24,32,50,56,91,206],"with":[20],"annotations":[21,29],"(source)":[22],"and":[23,71,103,128,149,162,200,224,231],"interest":[27],"without":[28,184],"(target).":[30],"As":[31],"popular":[33],"semi-supervised":[34],"learning":[35,102,151],"method,":[36],"teacher-student":[38,92],"framework":[39,93],"(a":[40],"student":[41,120,139,164,182],"model":[42,140,155,165,175,183],"supervised":[44],"by":[45,205],"pseudo":[47,75],"labels":[48,76],"from":[49,67,125,158,168,180],"teacher":[51,154,174],"model)":[52],"has":[53],"also":[54],"yielded":[55],"large":[57,207],"accuracy":[58],"gain":[59],"cross-domain":[61],"detection.":[63],"However,":[64],"it":[65],"suffers":[66],"shift":[70],"generates":[72],"many":[73],"low-quality":[74],"(e.g.,":[77],"false":[78],"positives),":[79],"which":[80,98,220],"leads":[81],"to":[82,107,131,176,187],"sub-optimal":[83],"performance.":[84],"To":[85],"mitigate":[86],"this":[87],"problem,":[88],"we":[89,113,145,211],"propose":[90],"named":[94],"Adaptive":[95],"Teacher":[96],"(AT)":[97],"leverages":[99],"adversarial":[101,116],"weak-strong":[104,147],"data":[105,157,167],"augmentation":[106,148],"gap.":[111],"Specifically,":[112],"employ":[114],"feature-level":[115],"training":[117],"model,":[121],"allowing":[122],"features":[123],"derived":[124],"source":[127,189],"target":[129,160],"domains":[130],"share":[132],"similar":[133],"distributions.":[134],"This":[135,171],"process":[136],"ensures":[137],"produces":[141],"domain-invariant":[142],"features.":[143],"Furthermore,":[144],"apply":[146],"mutual":[150],"(taking":[156,166],"domain)":[161],"both":[169],"domains).":[170],"enables":[172],"learn":[177],"knowledge":[179],"being":[185],"biased":[186],"domain.":[190],"show":[192],"that":[193],"AT":[194],"demonstrates":[195],"superiority":[196],"over":[197],"existing":[198],"approaches":[199],"even":[201],"Oracle":[202],"(fully-supervised)":[203],"models":[204],"margin.":[208],"For":[209],"example,":[210],"achieve":[212],"50.9%":[213],"(49.3%)":[214],"mAP":[215],"on":[216],"Foggy":[217],"Cityscape":[218],"(Cli-part1K),":[219],"9.2%":[222],"(5.2%)":[223],"8.2%":[225],"(11.0%)":[226],"higher":[227],"than":[228],"previous":[229],"state-of-the-art":[230],"Oracle,":[232],"respectively.":[233]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312993742","counts_by_year":[{"year":2025,"cited_by_count":9},{"year":2024,"cited_by_count":63},{"year":2023,"cited_by_count":61},{"year":2022,"cited_by_count":1}],"updated_date":"2025-04-08T03:44:06.855851","created_date":"2023-01-05"}