{"id":"https://openalex.org/W3181350748","doi":"https://doi.org/10.1109/cvpr46437.2021.01026","title":"TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors","display_name":"TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors","publication_year":2021,"publication_date":"2021-06-01","ids":{"openalex":"https://openalex.org/W3181350748","doi":"https://doi.org/10.1109/cvpr46437.2021.01026","mag":"3181350748"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr46437.2021.01026","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2101.06557","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5082646616","display_name":"Simon Su","orcid":"https://orcid.org/0000-0002-2460-3899"},"institutions":[{"id":"https://openalex.org/I185261750","display_name":"University of Toronto","ror":"https://ror.org/03dbr7087","country_code":"CA","type":"funder","lineage":["https://openalex.org/I185261750"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Simon Suo","raw_affiliation_strings":["Uber ATG","University of Toronto"],"affiliations":[{"raw_affiliation_string":"Uber ATG","institution_ids":[]},{"raw_affiliation_string":"University of Toronto","institution_ids":["https://openalex.org/I185261750"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061778126","display_name":"Sebastian Regalado","orcid":null},"institutions":[{"id":"https://openalex.org/I151746483","display_name":"University of Waterloo","ror":"https://ror.org/01aff2v68","country_code":"CA","type":"funder","lineage":["https://openalex.org/I151746483"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Sebastian Regalado","raw_affiliation_strings":["University of Waterloo"],"affiliations":[{"raw_affiliation_string":"University of Waterloo","institution_ids":["https://openalex.org/I151746483"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023389308","display_name":"Sergio Casas","orcid":"https://orcid.org/0000-0002-0396-4628"},"institutions":[{"id":"https://openalex.org/I185261750","display_name":"University of Toronto","ror":"https://ror.org/03dbr7087","country_code":"CA","type":"funder","lineage":["https://openalex.org/I185261750"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Sergio Casas","raw_affiliation_strings":["Uber ATG","University of Toronto"],"affiliations":[{"raw_affiliation_string":"University of Toronto","institution_ids":["https://openalex.org/I185261750"]},{"raw_affiliation_string":"Uber ATG","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5058557954","display_name":"Raquel Urtasun","orcid":null},"institutions":[{"id":"https://openalex.org/I185261750","display_name":"University of Toronto","ror":"https://ror.org/03dbr7087","country_code":"CA","type":"funder","lineage":["https://openalex.org/I185261750"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Raquel Urtasun","raw_affiliation_strings":["Uber ATG","University of Toronto"],"affiliations":[{"raw_affiliation_string":"University of Toronto","institution_ids":["https://openalex.org/I185261750"]},{"raw_affiliation_string":"Uber ATG","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":40.369,"has_fulltext":false,"cited_by_count":110,"citation_normalized_percentile":{"value":0.999832,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":"10395","last_page":"10404"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10524","display_name":"Traffic control and management","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10524","display_name":"Traffic control and management","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.7364291},{"id":"https://openalex.org/keywords/traffic-simulation","display_name":"Traffic simulation","score":0.49953198},{"id":"https://openalex.org/keywords/encode","display_name":"ENCODE","score":0.44805643}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8162654},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.7364291},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.63667196},{"id":"https://openalex.org/C2778391309","wikidata":"https://www.wikidata.org/wiki/Q7832527","display_name":"Traffic simulation","level":3,"score":0.49953198},{"id":"https://openalex.org/C105339364","wikidata":"https://www.wikidata.org/wiki/Q2297740","display_name":"Software deployment","level":2,"score":0.4778335},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.47709757},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.4766684},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46688262},{"id":"https://openalex.org/C66746571","wikidata":"https://www.wikidata.org/wiki/Q1134833","display_name":"ENCODE","level":3,"score":0.44805643},{"id":"https://openalex.org/C64543145","wikidata":"https://www.wikidata.org/wiki/Q162942","display_name":"Intersection (aeronautics)","level":2,"score":0.38589254},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.09172881},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr46437.2021.01026","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2101.06557","pdf_url":"http://arxiv.org/pdf/2101.06557","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2101.06557","pdf_url":"http://arxiv.org/pdf/2101.06557","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":48,"referenced_works":["https://openalex.org/W1592601589","https://openalex.org/W1749494163","https://openalex.org/W1931877416","https://openalex.org/W1959608418","https://openalex.org/W1965455100","https://openalex.org/W2056877664","https://openalex.org/W2089080831","https://openalex.org/W2126270075","https://openalex.org/W2167224731","https://openalex.org/W2188365844","https://openalex.org/W2342840547","https://openalex.org/W2424778531","https://openalex.org/W2727840223","https://openalex.org/W2753738274","https://openalex.org/W2771506457","https://openalex.org/W2798965597","https://openalex.org/W2886617718","https://openalex.org/W2898900571","https://openalex.org/W2900210368","https://openalex.org/W2903709398","https://openalex.org/W2905173465","https://openalex.org/W2910781732","https://openalex.org/W2960571052","https://openalex.org/W2962101532","https://openalex.org/W2962867954","https://openalex.org/W2962894046","https://openalex.org/W2962957031","https://openalex.org/W2963219401","https://openalex.org/W2963277051","https://openalex.org/W2963858432","https://openalex.org/W2966291251","https://openalex.org/W2967177252","https://openalex.org/W2967195040","https://openalex.org/W2967503332","https://openalex.org/W2970116586","https://openalex.org/W2982745079","https://openalex.org/W2986406093","https://openalex.org/W2994612440","https://openalex.org/W2995411906","https://openalex.org/W3028769608","https://openalex.org/W3034716600","https://openalex.org/W3090789587","https://openalex.org/W3106228955","https://openalex.org/W3106944564","https://openalex.org/W3130935189","https://openalex.org/W3132535424","https://openalex.org/W4295719664","https://openalex.org/W4311696644"],"related_works":["https://openalex.org/W4387338536","https://openalex.org/W2912466474","https://openalex.org/W2791136048","https://openalex.org/W2768698792","https://openalex.org/W2380893205","https://openalex.org/W2379485737","https://openalex.org/W2378003987","https://openalex.org/W2357774911","https://openalex.org/W2357049040","https://openalex.org/W2168683356"],"abstract_inverted_index":{"Simulation":[0],"has":[1],"the":[2,20,25,95,111,126,133],"potential":[3],"to":[4,64,162],"massively":[5],"scale":[6],"evaluation":[7],"of":[8,166],"self-driving":[9],"systems,":[10],"enabling":[11],"rapid":[12],"development":[13],"as":[14,16,146,148,160,176],"well":[15,147],"safe":[17],"deployment.":[18],"Bridging":[19],"gap":[21],"between":[22],"simulation":[23,33,136],"and":[24,52,70,130],"real":[26],"world":[27],"requires":[28],"realistic":[29,88,157],"multi-agent":[30,84],"behaviors.":[31,76],"Existing":[32],"environments":[34],"rely":[35],"on":[36],"heuristic-based":[37],"models":[38],"that":[39,103],"directly":[40,66],"encode":[41],"traffic":[42,89,158],"rules,":[43],"which":[44],"cannot":[45],"capture":[46,72],"irregular":[47],"maneuvers":[48],"(e.g.,":[49,55],"nudging,":[50],"U-turns)":[51],"complex":[53],"interactions":[54],"yielding,":[56],"merging).":[57],"In":[58,91],"contrast,":[59],"we":[60,80,93,124,169],"leverage":[61],"real-world":[62],"data":[63,178],"learn":[65,115],"from":[67],"human":[68,144],"demonstration,":[69],"thus":[71],"more":[73,156],"naturalistic":[74],"driving":[75],"To":[77,114],"this":[78],"end,":[79],"propose":[81],"TrafficSim,":[82],"a":[83,116,163],"behavior":[85],"model":[86,102],"for":[87,107,120,180],"simulation.":[90],"particular,":[92],"parameterize":[94],"policy":[96,118,127],"with":[97],"an":[98],"implicit":[99],"la-tent":[100],"variable":[101],"generates":[104,154],"socially-consistent":[105],"plans":[106],"all":[108],"actors":[109],"in":[110,128],"scene":[112],"jointly.":[113],"robust":[117],"amenable":[119],"long":[121],"horizon":[122],"simulation,":[123],"unroll":[125],"training":[129,181],"optimize":[131],"through":[132],"fully":[134],"differentiable":[135],"across":[137],"time.":[138],"Our":[139],"learning":[140],"objective":[141],"incorporates":[142],"both":[143],"demonstrations":[145],"common":[149],"sense.":[150],"We":[151],"show":[152],"TrafficSim":[153,175],"significantly":[155],"scenarios":[159],"compared":[161],"diverse":[164],"set":[165],"baselines.":[167],"Notably,":[168],"can":[170],"exploit":[171],"trajectories":[172],"generated":[173],"by":[174],"effective":[177],"augmentation":[179],"better":[182],"motion":[183],"planner.":[184]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3181350748","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":37},{"year":2023,"cited_by_count":29},{"year":2022,"cited_by_count":33},{"year":2021,"cited_by_count":8}],"updated_date":"2025-04-16T02:48:16.477459","created_date":"2021-07-19"}