{"id":"https://openalex.org/W3034733718","doi":"https://doi.org/10.1109/cvpr42600.2020.01464","title":"Fast Sparse ConvNets","display_name":"Fast Sparse ConvNets","publication_year":2020,"publication_date":"2020-06-01","ids":{"openalex":"https://openalex.org/W3034733718","doi":"https://doi.org/10.1109/cvpr42600.2020.01464","mag":"3034733718"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr42600.2020.01464","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5009345506","display_name":"Erich Elsen","orcid":null},"institutions":[{"id":"https://openalex.org/I4210090411","display_name":"DeepMind (United Kingdom)","ror":"https://ror.org/00971b260","country_code":"GB","type":"company","lineage":["https://openalex.org/I4210090411","https://openalex.org/I4210128969"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Erich Elsen","raw_affiliation_strings":["DeepMind, London, UK"],"affiliations":[{"raw_affiliation_string":"DeepMind, London, UK","institution_ids":["https://openalex.org/I4210090411"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081657332","display_name":"Marat Dukhan","orcid":null},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Marat Dukhan","raw_affiliation_strings":["Google, Mountain View, CA"],"affiliations":[{"raw_affiliation_string":"Google, Mountain View, CA","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032764769","display_name":"Trevor Gale","orcid":"https://orcid.org/0000-0003-3927-9267"},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Trevor Gale","raw_affiliation_strings":["Google, Mountain View, CA"],"affiliations":[{"raw_affiliation_string":"Google, Mountain View, CA","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5004625775","display_name":"Karen Simonyan","orcid":"https://orcid.org/0000-0003-0787-5507"},"institutions":[{"id":"https://openalex.org/I4210090411","display_name":"DeepMind (United Kingdom)","ror":"https://ror.org/00971b260","country_code":"GB","type":"company","lineage":["https://openalex.org/I4210090411","https://openalex.org/I4210128969"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Karen Simonyan","raw_affiliation_strings":["DeepMind, London, UK"],"affiliations":[{"raw_affiliation_string":"DeepMind, London, UK","institution_ids":["https://openalex.org/I4210090411"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.939,"has_fulltext":false,"cited_by_count":89,"citation_normalized_percentile":{"value":0.999874,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":"14617","last_page":"14626"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/flops","display_name":"FLOPS","score":0.8394982},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.5740702}],"concepts":[{"id":"https://openalex.org/C3826847","wikidata":"https://www.wikidata.org/wiki/Q188768","display_name":"FLOPS","level":2,"score":0.8394982},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.811549},{"id":"https://openalex.org/C2780513914","wikidata":"https://www.wikidata.org/wiki/Q18210350","display_name":"Bottleneck","level":2,"score":0.8091438},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.63014275},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.5740702},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.5573124},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5079873},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.49182892},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46778902},{"id":"https://openalex.org/C111335779","wikidata":"https://www.wikidata.org/wiki/Q3454686","display_name":"Reduction (mathematics)","level":2,"score":0.4653367},{"id":"https://openalex.org/C56372850","wikidata":"https://www.wikidata.org/wiki/Q1050404","display_name":"Sparse matrix","level":3,"score":0.45517308},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.41448474},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.37101603},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.35318023},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33808333},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.10370341},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.09197983},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr42600.2020.01464","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9","score":0.56}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":50,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W1903029394","https://openalex.org/W1935978687","https://openalex.org/W2117539524","https://openalex.org/W2163605009","https://openalex.org/W2194775991","https://openalex.org/W2482315298","https://openalex.org/W2531409750","https://openalex.org/W2551268863","https://openalex.org/W2553303224","https://openalex.org/W2590246587","https://openalex.org/W2612445135","https://openalex.org/W2625141509","https://openalex.org/W2752782242","https://openalex.org/W2764043458","https://openalex.org/W2766260608","https://openalex.org/W2766839578","https://openalex.org/W2783873922","https://openalex.org/W2788440360","https://openalex.org/W2810075754","https://openalex.org/W28170644","https://openalex.org/W2884367402","https://openalex.org/W2886851211","https://openalex.org/W2908701480","https://openalex.org/W2921353139","https://openalex.org/W2922390595","https://openalex.org/W2949941638","https://openalex.org/W2951104886","https://openalex.org/W2955425717","https://openalex.org/W2962835968","https://openalex.org/W2962921245","https://openalex.org/W2963061092","https://openalex.org/W2963125010","https://openalex.org/W2963163009","https://openalex.org/W2963374479","https://openalex.org/W2963420686","https://openalex.org/W2963446712","https://openalex.org/W2963828549","https://openalex.org/W2963918968","https://openalex.org/W2964081807","https://openalex.org/W2964217527","https://openalex.org/W2964233199","https://openalex.org/W2964307104","https://openalex.org/W2964336816","https://openalex.org/W2964337156","https://openalex.org/W2965658867","https://openalex.org/W2967733054","https://openalex.org/W4285719527","https://openalex.org/W4297775537","https://openalex.org/W4298580827"],"related_works":["https://openalex.org/W4292794827","https://openalex.org/W4224939635","https://openalex.org/W2995343971","https://openalex.org/W2992221004","https://openalex.org/W2982536526","https://openalex.org/W2891818448","https://openalex.org/W2885125400","https://openalex.org/W2595172197","https://openalex.org/W2127970246","https://openalex.org/W2084856301"],"abstract_inverted_index":{"Historically,":[0],"the":[1,10,14,26,30,39,51,69,77,99,110,117,123,165,168,196],"pursuit":[2],"of":[3,9,25,48,79,89,101,112,150,167,175,183,220,231],"efficient":[4,80,151,173,238],"inference":[5],"has":[6],"been":[7],"one":[8,217],"driving":[11],"forces":[12],"behind":[13],"research":[15],"into":[16,136],"new":[17],"deep":[18,241],"learning":[19,242],"architectures":[20,189],"and":[21,38,64,186,239],"building":[22,53,81],"blocks.":[23],"Some":[24],"recent":[27],"examples":[28],"include:":[29],"squeeze-and-excitation":[31],"module,":[32],"depthwise":[33],"separable":[34],"convolutions":[35],"in":[36,42,46,68,130],"Xception,":[37],"inverted":[40],"bottleneck":[41],"MobileNet":[43,184,187],"v2.":[44],"Notably,":[45],"all":[47],"these":[49,102],"cases,":[50],"resulting":[52],"blocks":[54,82],"enabled":[55],"not":[56,121,134],"only":[57],"higher":[58,62],"efficiency,":[59],"but":[60,87],"also":[61],"accuracy,":[63],"found":[65],"wide":[66],"adoption":[67,230],"field.":[70],"In":[71],"this":[72,128,144],"work,":[73],"we":[74,96,159,178],"further":[75],"expand":[76],"arsenal":[78],"for":[83,98,154,164,236],"neural":[84],"network":[85],"architectures;":[86],"instead":[88],"combining":[90],"standard":[91],"primitives":[92,104],"(such":[93],"as":[94,233],"convolution),":[95],"advocate":[97],"replacement":[100],"dense":[103,193,207],"with":[105,171],"their":[106,206],"sparse":[107,152,176,181,203],"counterparts.":[108],"While":[109],"idea":[111],"using":[113],"sparsity":[114,232],"to":[115,142,161,215],"decrease":[116],"parameter":[118],"count":[119],"is":[120,126],"new,":[122],"conventional":[124],"wisdom":[125],"that":[127,180,224],"reduction":[129],"theoretical":[131],"FLOPs":[132],"does":[133],"translate":[135],"real-world":[137],"efficiency":[138],"gains.":[139],"We":[140,222],"aim":[141],"correct":[143],"misconception":[145],"by":[146,209],"introducing":[147],"a":[148,234],"family":[149],"kernels":[153],"several":[155],"hardware":[156],"platforms,":[157],"which":[158],"plan":[160],"open":[162],"source":[163],"benefit":[166],"community.":[169],"Equipped":[170],"our":[172,202,225],"implementation":[174],"primitives,":[177],"show":[179],"versions":[182],"v1":[185],"v2":[188],"substantially":[190],"outperform":[191,205],"strong":[192],"baselines":[194],"on":[195],"efficiency-accuracy":[197],"curve.":[198],"On":[199],"Snapdragon":[200],"835":[201],"networks":[204],"equivalents":[208],"1.3":[210],"-":[211,213],"2.4\u00d7":[212],"equivalent":[214],"approximately":[216],"entire":[218],"generation":[219],"improvement.":[221],"hope":[223],"findings":[226],"will":[227],"facilitate":[228],"wider":[229],"tool":[235],"creating":[237],"accurate":[240],"architectures.":[243]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3034733718","counts_by_year":[{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":11},{"year":2022,"cited_by_count":14},{"year":2021,"cited_by_count":37},{"year":2020,"cited_by_count":17},{"year":2019,"cited_by_count":1}],"updated_date":"2025-01-18T10:04:21.772781","created_date":"2020-06-19"}