{"id":"https://openalex.org/W3035293718","doi":"https://doi.org/10.1109/cvpr42600.2020.01341","title":"Density-Aware Graph for Deep Semi-Supervised Visual Recognition","display_name":"Density-Aware Graph for Deep Semi-Supervised Visual Recognition","publication_year":2020,"publication_date":"2020-06-01","ids":{"openalex":"https://openalex.org/W3035293718","doi":"https://doi.org/10.1109/cvpr42600.2020.01341","mag":"3035293718"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr42600.2020.01341","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2003.13194","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5003158994","display_name":"Suichan Li","orcid":null},"institutions":[{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]},{"id":"https://openalex.org/I126520041","display_name":"University of Science and Technology of China","ror":"https://ror.org/04c4dkn09","country_code":"CN","type":"education","lineage":["https://openalex.org/I126520041","https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Suichan Li","raw_affiliation_strings":["Key Laboratory of Electromagnetic Space Information, The Chinese Academy of Sciences","School of Information Science and Technology, University of Science and Technology of China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Electromagnetic Space Information, The Chinese Academy of Sciences","institution_ids":["https://openalex.org/I19820366"]},{"raw_affiliation_string":"School of Information Science and Technology, University of Science and Technology of China","institution_ids":["https://openalex.org/I126520041"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100395521","display_name":"Bin Liu","orcid":"https://orcid.org/0000-0002-7028-5334"},"institutions":[{"id":"https://openalex.org/I126520041","display_name":"University of Science and Technology of China","ror":"https://ror.org/04c4dkn09","country_code":"CN","type":"education","lineage":["https://openalex.org/I126520041","https://openalex.org/I19820366"]},{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bin Liu","raw_affiliation_strings":["Key Laboratory of Electromagnetic Space Information, The Chinese Academy of Sciences","School of Information Science and Technology, University of Science and Technology of China"],"affiliations":[{"raw_affiliation_string":"School of Information Science and Technology, University of Science and Technology of China","institution_ids":["https://openalex.org/I126520041"]},{"raw_affiliation_string":"Key Laboratory of Electromagnetic Space Information, The Chinese Academy of Sciences","institution_ids":["https://openalex.org/I19820366"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100364587","display_name":"Dongdong Chen","orcid":"https://orcid.org/0000-0002-4642-4373"},"institutions":[{"id":"https://openalex.org/I4210164937","display_name":"Microsoft Research (United Kingdom)","ror":"https://ror.org/05k87vq12","country_code":"GB","type":"company","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210164937"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Dongdong Chen","raw_affiliation_strings":["Microsoft Research"],"affiliations":[{"raw_affiliation_string":"Microsoft Research","institution_ids":["https://openalex.org/I4210164937"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045938154","display_name":"Qi Chu","orcid":"https://orcid.org/0000-0003-3028-0755"},"institutions":[{"id":"https://openalex.org/I126520041","display_name":"University of Science and Technology of China","ror":"https://ror.org/04c4dkn09","country_code":"CN","type":"education","lineage":["https://openalex.org/I126520041","https://openalex.org/I19820366"]},{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qi Chu","raw_affiliation_strings":["Key Laboratory of Electromagnetic Space Information, The Chinese Academy of Sciences","School of Information Science and Technology, University of Science and Technology of China"],"affiliations":[{"raw_affiliation_string":"School of Information Science and Technology, University of Science and Technology of China","institution_ids":["https://openalex.org/I126520041"]},{"raw_affiliation_string":"Key Laboratory of Electromagnetic Space Information, The Chinese Academy of Sciences","institution_ids":["https://openalex.org/I19820366"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100390820","display_name":"Lu Yuan","orcid":"https://orcid.org/0000-0001-7879-0389"},"institutions":[{"id":"https://openalex.org/I4210164937","display_name":"Microsoft Research (United Kingdom)","ror":"https://ror.org/05k87vq12","country_code":"GB","type":"company","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210164937"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Lu Yuan","raw_affiliation_strings":["Microsoft Research"],"affiliations":[{"raw_affiliation_string":"Microsoft Research","institution_ids":["https://openalex.org/I4210164937"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5064573190","display_name":"Nenghai Yu","orcid":"https://orcid.org/0000-0003-4417-9316"},"institutions":[{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]},{"id":"https://openalex.org/I126520041","display_name":"University of Science and Technology of China","ror":"https://ror.org/04c4dkn09","country_code":"CN","type":"education","lineage":["https://openalex.org/I126520041","https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Nenghai Yu","raw_affiliation_strings":["Key Laboratory of Electromagnetic Space Information, The Chinese Academy of Sciences","School of Information Science and Technology, University of Science and Technology of China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Electromagnetic Space Information, The Chinese Academy of Sciences","institution_ids":["https://openalex.org/I19820366"]},{"raw_affiliation_string":"School of Information Science and Technology, University of Science and Technology of China","institution_ids":["https://openalex.org/I126520041"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":27,"citation_normalized_percentile":{"value":0.999943,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":"3","issue":null,"first_page":"13397","last_page":"13406"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.685502},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.54158854},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5333512},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.446944}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7163769},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.685502},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.64006346},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6351738},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.5525319},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.54158854},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5333512},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.48816353},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.446944},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43263447},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.42388347},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.42249325},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.17400682},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16606328},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr42600.2020.01341","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2003.13194","pdf_url":"https://arxiv.org/pdf/2003.13194","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2003.13194","pdf_url":"https://arxiv.org/pdf/2003.13194","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","score":0.75,"display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W1630959083","https://openalex.org/W2108598243","https://openalex.org/W2116341502","https://openalex.org/W2145494108","https://openalex.org/W2165835468","https://openalex.org/W2194775991","https://openalex.org/W2293363371","https://openalex.org/W2592691248","https://openalex.org/W2765407302","https://openalex.org/W2895094948","https://openalex.org/W2909869271","https://openalex.org/W2949985837","https://openalex.org/W2951970475","https://openalex.org/W2953070460","https://openalex.org/W2962711740","https://openalex.org/W2962767366","https://openalex.org/W2963341924","https://openalex.org/W2963399829","https://openalex.org/W2963558289","https://openalex.org/W2963858333","https://openalex.org/W2963956526","https://openalex.org/W2964015378","https://openalex.org/W2978426779","https://openalex.org/W2979805229","https://openalex.org/W2981979099","https://openalex.org/W2985966260","https://openalex.org/W2990231018","https://openalex.org/W2998388430","https://openalex.org/W3006896454","https://openalex.org/W3009044186","https://openalex.org/W3118608800","https://openalex.org/W3147183491","https://openalex.org/W3209458476","https://openalex.org/W4294558607","https://openalex.org/W4297733535","https://openalex.org/W4299585995","https://openalex.org/W92894758"],"related_works":["https://openalex.org/W4389116644","https://openalex.org/W4388405611","https://openalex.org/W4309346246","https://openalex.org/W3208297503","https://openalex.org/W3119773509","https://openalex.org/W2965546495","https://openalex.org/W2964117661","https://openalex.org/W2889153461","https://openalex.org/W2619127353","https://openalex.org/W2153315159"],"abstract_inverted_index":{"Semi-supervised":[0],"learning":[1,171],"(SSL)":[2],"has":[3],"been":[4],"extensively":[5],"studied":[6],"to":[7,44,46,79,133,147,193,218,228],"improve":[8,244],"the":[9,21,38,47,51,60,74,106,111,117,149,161,169,200,220,229,236,251,254],"generalization":[10],"ability":[11],"of":[12,253],"deep":[13],"neural":[14],"networks":[15],"for":[16,59,222],"visual":[17],"recognition.":[18],"To":[19],"involve":[20],"unlabelled":[22,61],"data,":[23],"most":[24],"existing":[25],"SSL":[26,150,260],"methods":[27,52,269],"are":[28,42],"based":[29,109,123,158,212,259],"on":[30,110,159],"common":[31],"density-based":[32],"cluster":[33],"assumption:":[34],"samples":[35,224],"lying":[36],"in":[37,88,97,179,203],"same":[39,48],"high-density":[40],"region":[41],"likely":[43],"belong":[45],"class,":[49],"including":[50],"performing":[53],"consistency":[54],"regularization":[55],"or":[56],"generating":[57],"pseudo-labels":[58,221],"images.":[62],"Despite":[63],"their":[64],"impressive":[65],"performance,":[66],"we":[67,184],"argue":[68],"three":[69],"limitations":[70],"exist:":[71],"1)":[72],"Though":[73],"density":[75],"information":[76,163,202],"is":[77,127,216],"demonstrated":[78],"be":[80,134,165,177],"an":[81,89,180],"important":[82],"clue,":[83],"they":[84,103],"all":[85],"use":[86],"it":[87,96,126],"implicit":[90],"way":[91],"and":[92,115,131,168,172,239,243,262],"have":[93],"not":[94],"exploited":[95],"depth.":[98],"2)":[99],"For":[100,121],"feature":[101,107,138,170,230],"learning,":[102],"often":[104,128],"learn":[105,194],"embedding":[108],"single":[112],"data":[113],"sample":[114],"ignore":[116],"neighborhood":[118,162,201],"information.":[119],"3)":[120],"label-propagation":[122],"pseudo-label":[124],"generation,":[125],"done":[129],"offline":[130],"difficult":[132],"end-to-end":[135,181],"trained":[136,178],"with":[137],"learning.":[139],"Motivated":[140],"by":[141,152,198,233,270],"these":[142],"limitations,":[143],"this":[144],"paper":[145],"proposes":[146],"solve":[148],"problem":[151],"building":[153],"a":[154,187,204,208,271],"novel":[155,209],"density-aware":[156,205,257],"graph,":[157],"which":[160],"can":[164,175,265],"easily":[166],"leveraged":[167],"label":[173],"propagation":[174],"also":[176],"way.":[182],"Specifically,":[183],"first":[185],"propose":[186],"new":[188],"Density-aware":[189],"Neighborhood":[190],"Aggregation(DNA)":[191],"module":[192,215,238,241],"more":[195,225],"discriminative":[196],"features":[197],"incorporating":[199],"manner.":[206],"Then":[207],"Density-ascending":[210],"Path":[211],"Label":[213],"Propagation(DPLP)":[214],"proposed":[217,256],"generate":[219],"unlabeled":[223],"efficiently":[226],"according":[227],"distribution":[231],"characterized":[232],"density.":[234],"Finally,":[235],"DNA":[237],"DPLP":[240],"evolve":[242],"each":[245],"other":[246],"end-to-end.":[247],"Extensive":[248],"experiments":[249],"demonstrate":[250],"effectiveness":[252],"newly":[255],"graph":[258],"framework":[261],"our":[263],"approach":[264],"outperform":[266],"current":[267],"state-of-the-art":[268],"large":[272],"margin.":[273]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3035293718","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":11},{"year":2021,"cited_by_count":9},{"year":2020,"cited_by_count":1}],"updated_date":"2024-12-05T22:04:49.333855","created_date":"2020-06-19"}