{"id":"https://openalex.org/W3035326127","doi":"https://doi.org/10.1109/cvpr42600.2020.00837","title":"Multi-Scale Progressive Fusion Network for Single Image Deraining","display_name":"Multi-Scale Progressive Fusion Network for Single Image Deraining","publication_year":2020,"publication_date":"2020-06-01","ids":{"openalex":"https://openalex.org/W3035326127","doi":"https://doi.org/10.1109/cvpr42600.2020.00837","mag":"3035326127"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr42600.2020.00837","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2003.10985","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103140908","display_name":"Kui Jiang","orcid":"https://orcid.org/0000-0002-4055-7503"},"institutions":[{"id":"https://openalex.org/I37461747","display_name":"Wuhan University","ror":"https://ror.org/033vjfk17","country_code":"CN","type":"education","lineage":["https://openalex.org/I37461747"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kui Jiang","raw_affiliation_strings":["Wuhan University"],"affiliations":[{"raw_affiliation_string":"Wuhan University","institution_ids":["https://openalex.org/I37461747"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100741750","display_name":"Zhongyuan Wang","orcid":"https://orcid.org/0000-0002-9796-488X"},"institutions":[{"id":"https://openalex.org/I37461747","display_name":"Wuhan University","ror":"https://ror.org/033vjfk17","country_code":"CN","type":"education","lineage":["https://openalex.org/I37461747"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhongyuan Wang","raw_affiliation_strings":["Wuhan University"],"affiliations":[{"raw_affiliation_string":"Wuhan University","institution_ids":["https://openalex.org/I37461747"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088371302","display_name":"Peng Yi","orcid":"https://orcid.org/0000-0001-9366-951X"},"institutions":[{"id":"https://openalex.org/I37461747","display_name":"Wuhan University","ror":"https://ror.org/033vjfk17","country_code":"CN","type":"education","lineage":["https://openalex.org/I37461747"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Peng Yi","raw_affiliation_strings":["Wuhan University"],"affiliations":[{"raw_affiliation_string":"Wuhan University","institution_ids":["https://openalex.org/I37461747"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100418568","display_name":"Chen Chen","orcid":"https://orcid.org/0000-0003-3957-7061"},"institutions":[{"id":"https://openalex.org/I102149020","display_name":"University of North Carolina at Charlotte","ror":"https://ror.org/04dawnj30","country_code":"US","type":"education","lineage":["https://openalex.org/I102149020"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chen Chen","raw_affiliation_strings":["University of North Carolina at Charlotte"],"affiliations":[{"raw_affiliation_string":"University of North Carolina at Charlotte","institution_ids":["https://openalex.org/I102149020"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038724255","display_name":"Baojin Huang","orcid":"https://orcid.org/0000-0002-4882-5787"},"institutions":[{"id":"https://openalex.org/I37461747","display_name":"Wuhan University","ror":"https://ror.org/033vjfk17","country_code":"CN","type":"education","lineage":["https://openalex.org/I37461747"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Baojin Huang","raw_affiliation_strings":["Wuhan University"],"affiliations":[{"raw_affiliation_string":"Wuhan University","institution_ids":["https://openalex.org/I37461747"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101654058","display_name":"Yimin Luo","orcid":"https://orcid.org/0000-0002-8032-371X"},"institutions":[{"id":"https://openalex.org/I183935753","display_name":"King's College London","ror":"https://ror.org/0220mzb33","country_code":"GB","type":"education","lineage":["https://openalex.org/I124357947","https://openalex.org/I183935753"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Yimin Luo","raw_affiliation_strings":["King's College London"],"affiliations":[{"raw_affiliation_string":"King's College London","institution_ids":["https://openalex.org/I183935753"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040010053","display_name":"Jiayi Ma","orcid":"https://orcid.org/0000-0003-3264-3265"},"institutions":[{"id":"https://openalex.org/I37461747","display_name":"Wuhan University","ror":"https://ror.org/033vjfk17","country_code":"CN","type":"education","lineage":["https://openalex.org/I37461747"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiayi Ma","raw_affiliation_strings":["Wuhan University"],"affiliations":[{"raw_affiliation_string":"Wuhan University","institution_ids":["https://openalex.org/I37461747"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5087165831","display_name":"Junjun Jiang","orcid":"https://orcid.org/0000-0002-5694-505X"},"institutions":[{"id":"https://openalex.org/I204983213","display_name":"Harbin Institute of Technology","ror":"https://ror.org/01yqg2h08","country_code":"CN","type":"education","lineage":["https://openalex.org/I204983213"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Junjun Jiang","raw_affiliation_strings":["Harbin Institute of Technology"],"affiliations":[{"raw_affiliation_string":"Harbin Institute of Technology","institution_ids":["https://openalex.org/I204983213"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":516,"citation_normalized_percentile":{"value":0.999853,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":"8343","last_page":"8352"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/streak","display_name":"Streak","score":0.7623842},{"id":"https://openalex.org/keywords/pyramid","display_name":"Pyramid (geometry)","score":0.6881265},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.560208},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5499541},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.4278925}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.77693594},{"id":"https://openalex.org/C65185188","wikidata":"https://www.wikidata.org/wiki/Q107775","display_name":"Streak","level":2,"score":0.7623842},{"id":"https://openalex.org/C142575187","wikidata":"https://www.wikidata.org/wiki/Q3358290","display_name":"Pyramid (geometry)","level":2,"score":0.6881265},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.63146627},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.560208},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5499541},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.5243676},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.505574},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.47960365},{"id":"https://openalex.org/C69744172","wikidata":"https://www.wikidata.org/wiki/Q860822","display_name":"Image fusion","level":3,"score":0.46929035},{"id":"https://openalex.org/C205372480","wikidata":"https://www.wikidata.org/wiki/Q210521","display_name":"Image resolution","level":2,"score":0.439628},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.4278925},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.41349265},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4094929},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.09842691},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.093485385},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.08346963},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.07628831},{"id":"https://openalex.org/C199289684","wikidata":"https://www.wikidata.org/wiki/Q83353","display_name":"Mineralogy","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr42600.2020.00837","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2003.10985","pdf_url":"https://arxiv.org/pdf/2003.10985","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2003.10985","pdf_url":"https://arxiv.org/pdf/2003.10985","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":47,"referenced_works":["https://openalex.org/W1601729531","https://openalex.org/W1976056157","https://openalex.org/W2073623229","https://openalex.org/W2102166818","https://openalex.org/W2121396509","https://openalex.org/W2122596619","https://openalex.org/W2132819211","https://openalex.org/W2133665775","https://openalex.org/W2141983208","https://openalex.org/W2151707108","https://openalex.org/W2154621477","https://openalex.org/W2163146621","https://openalex.org/W2466666260","https://openalex.org/W2509784253","https://openalex.org/W2534320940","https://openalex.org/W2559264300","https://openalex.org/W2561196672","https://openalex.org/W2562137921","https://openalex.org/W2563705555","https://openalex.org/W2607041014","https://openalex.org/W2613034492","https://openalex.org/W2740982616","https://openalex.org/W2780544323","https://openalex.org/W2781413027","https://openalex.org/W2796347433","https://openalex.org/W2799352588","https://openalex.org/W2884068670","https://openalex.org/W2891396148","https://openalex.org/W2910832120","https://openalex.org/W2912435603","https://openalex.org/W2930755307","https://openalex.org/W2963017889","https://openalex.org/W2963150697","https://openalex.org/W2963800716","https://openalex.org/W2963843230","https://openalex.org/W2963866045","https://openalex.org/W2963878020","https://openalex.org/W2964101377","https://openalex.org/W2964212750","https://openalex.org/W2964267765","https://openalex.org/W2964971929","https://openalex.org/W2967584026","https://openalex.org/W2980047233","https://openalex.org/W3021784717","https://openalex.org/W3101228253","https://openalex.org/W3159245327","https://openalex.org/W4293584584"],"related_works":["https://openalex.org/W4312814274","https://openalex.org/W4285370786","https://openalex.org/W3207760230","https://openalex.org/W2554736181","https://openalex.org/W2358353312","https://openalex.org/W2296488620","https://openalex.org/W2065905023","https://openalex.org/W2000740899","https://openalex.org/W1590307681","https://openalex.org/W1496222301"],"abstract_inverted_index":{"Rain":[0],"streaks":[1,63,95],"in":[2,6,27,75],"the":[3,20,57,65,92,105,112,118,135,140,158,164,179],"air":[4],"appear":[5],"various":[7],"blurring":[8],"degrees":[9],"and":[10,71,114,132,177,190,193],"resolutions":[11],"due":[12],"to":[13,19,43,103,110,121,138],"different":[14,97,148],"distances":[15],"from":[16,64,147],"their":[17],"positions":[18],"camera.":[21],"Similar":[22],"rain":[23,29,49,62,88,94,124],"patterns":[24],"are":[25],"visible":[26],"a":[28,76,195],"image":[30,69,87,203],"as":[31,33],"well":[32],"its":[34],"multi-scale":[35,58,80,129,151],"(or":[36],"multi-resolution)":[37],"versions,":[38],"which":[39],"makes":[40],"it":[41],"possible":[42],"exploit":[44],"such":[45],"complementary":[46,113],"information":[47,116,146],"for":[48,61,85],"streak":[50,89],"representation.":[51],"In":[52],"this":[53],"work,":[54],"we":[55,99,127,183],"explore":[56,111],"collaborative":[59],"representation":[60],"perspective":[66],"of":[67,143,199],"input":[68],"scales":[70],"hierarchical":[72],"deep":[73],"features":[74],"unified":[77],"framework,":[78],"termed":[79],"progressive":[81,152],"fusion":[82,142,153],"network":[83],"(MSPFN)":[84],"single":[86],"removal.":[90],"For":[91],"similar":[93],"at":[96,117,210],"positions,":[98],"employ":[100],"recurrent":[101],"calculation":[102],"capture":[104],"global":[106],"texture,":[107],"thus":[108],"allowing":[109],"redundant":[115],"spatial":[119],"dimension":[120],"characterize":[122],"target":[123],"streaks.":[125],"Besides,":[126],"construct":[128],"pyramid":[130],"structure,":[131],"further":[133],"introduce":[134],"attention":[136],"mechanism":[137],"guide":[139],"fine":[141],"these":[144],"correlated":[145],"scales.":[149],"This":[150],"strategy":[154],"not":[155],"only":[156],"promotes":[157],"cooperative":[159],"representation,":[160],"but":[161],"also":[162],"boosts":[163],"end-to-end":[165],"training.":[166],"Our":[167],"proposed":[168],"method":[169],"is":[170,208],"extensively":[171],"evaluated":[172],"on":[173,186],"several":[174],"benchmark":[175],"datasets":[176],"achieves":[178],"state-of-the-art":[180],"results.":[181],"Moreover,":[182],"conduct":[184],"experiments":[185],"joint":[187],"deraining,":[188],"detection,":[189],"segmentation":[191],"tasks,":[192],"inspire":[194],"new":[196],"research":[197],"direction":[198],"vision":[200],"task":[201],"driven":[202],"deraining.":[204],"The":[205],"source":[206],"code":[207],"available":[209],"https://github.com/kuihua/MSPFN.":[211]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3035326127","counts_by_year":[{"year":2024,"cited_by_count":126},{"year":2023,"cited_by_count":144},{"year":2022,"cited_by_count":125},{"year":2021,"cited_by_count":95},{"year":2020,"cited_by_count":16}],"updated_date":"2024-12-07T18:56:49.128419","created_date":"2020-06-19"}