{"id":"https://openalex.org/W3035002114","doi":"https://doi.org/10.1109/cvpr42600.2020.00570","title":"Grid-GCN for Fast and Scalable Point Cloud Learning","display_name":"Grid-GCN for Fast and Scalable Point Cloud Learning","publication_year":2020,"publication_date":"2020-06-01","ids":{"openalex":"https://openalex.org/W3035002114","doi":"https://doi.org/10.1109/cvpr42600.2020.00570","mag":"3035002114"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr42600.2020.00570","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/1912.02984","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5030369632","display_name":"Qiangeng Xu","orcid":null},"institutions":[{"id":"https://openalex.org/I2800817003","display_name":"Southern California University for Professional Studies","ror":"https://ror.org/058zz0t50","country_code":"US","type":"education","lineage":["https://openalex.org/I2800817003"]},{"id":"https://openalex.org/I1174212","display_name":"University of Southern California","ror":"https://ror.org/03taz7m60","country_code":"US","type":"education","lineage":["https://openalex.org/I1174212"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Qiangeng Xu","raw_affiliation_strings":["University of Southern California"],"affiliations":[{"raw_affiliation_string":"University of Southern California","institution_ids":["https://openalex.org/I2800817003","https://openalex.org/I1174212"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038163730","display_name":"Xudong Sun","orcid":"https://orcid.org/0000-0002-5870-6343"},"institutions":[{"id":"https://openalex.org/I4401726997","display_name":"Tusimple (United States)","ror":"https://ror.org/000xs1x50","country_code":null,"type":"company","lineage":["https://openalex.org/I4401726997"]}],"countries":[],"is_corresponding":false,"raw_author_name":"Xudong Sun","raw_affiliation_strings":["Tusimple, Inc"],"affiliations":[{"raw_affiliation_string":"Tusimple, Inc","institution_ids":["https://openalex.org/I4401726997"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024267838","display_name":"Cho-Ying Wu","orcid":null},"institutions":[{"id":"https://openalex.org/I1174212","display_name":"University of Southern California","ror":"https://ror.org/03taz7m60","country_code":"US","type":"education","lineage":["https://openalex.org/I1174212"]},{"id":"https://openalex.org/I2800817003","display_name":"Southern California University for Professional Studies","ror":"https://ror.org/058zz0t50","country_code":"US","type":"education","lineage":["https://openalex.org/I2800817003"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Cho-Ying Wu","raw_affiliation_strings":["University of Southern California"],"affiliations":[{"raw_affiliation_string":"University of Southern California","institution_ids":["https://openalex.org/I1174212","https://openalex.org/I2800817003"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018508573","display_name":"Panqu Wang","orcid":null},"institutions":[{"id":"https://openalex.org/I4401726997","display_name":"Tusimple (United States)","ror":"https://ror.org/000xs1x50","country_code":null,"type":"company","lineage":["https://openalex.org/I4401726997"]}],"countries":[],"is_corresponding":false,"raw_author_name":"Panqu Wang","raw_affiliation_strings":["Tusimple, Inc"],"affiliations":[{"raw_affiliation_string":"Tusimple, Inc","institution_ids":["https://openalex.org/I4401726997"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5082235583","display_name":"Ulrich Neumann","orcid":"https://orcid.org/0000-0001-8977-7112"},"institutions":[{"id":"https://openalex.org/I2800817003","display_name":"Southern California University for Professional Studies","ror":"https://ror.org/058zz0t50","country_code":"US","type":"education","lineage":["https://openalex.org/I2800817003"]},{"id":"https://openalex.org/I1174212","display_name":"University of Southern California","ror":"https://ror.org/03taz7m60","country_code":"US","type":"education","lineage":["https://openalex.org/I1174212"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ulrich Neumann","raw_affiliation_strings":["University of Southern California"],"affiliations":[{"raw_affiliation_string":"University of Southern California","institution_ids":["https://openalex.org/I2800817003","https://openalex.org/I1174212"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":31.767,"has_fulltext":false,"cited_by_count":220,"citation_normalized_percentile":{"value":0.999298,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":"5660","last_page":"5669"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10719","display_name":"3D Shape Modeling and Analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10719","display_name":"3D Shape Modeling and Analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11211","display_name":"3D Surveying and Cultural Heritage","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1907","display_name":"Geology"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/granularity","display_name":"Granularity","score":0.5033862}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8422697},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.6958695},{"id":"https://openalex.org/C187691185","wikidata":"https://www.wikidata.org/wiki/Q2020720","display_name":"Grid","level":2,"score":0.648405},{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.6336363},{"id":"https://openalex.org/C177774035","wikidata":"https://www.wikidata.org/wiki/Q1246948","display_name":"Granularity","level":2,"score":0.5033862},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.48292038},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.45035726},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.43390605},{"id":"https://openalex.org/C79974875","wikidata":"https://www.wikidata.org/wiki/Q483639","display_name":"Cloud computing","level":2,"score":0.4259853},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.35816997},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.34891135},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.24142635},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.14540568},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.1113593},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08807719},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr42600.2020.00570","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1912.02984","pdf_url":"http://arxiv.org/pdf/1912.02984","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1912.02984","pdf_url":"http://arxiv.org/pdf/1912.02984","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":51,"referenced_works":["https://openalex.org/W1920022804","https://openalex.org/W2122111042","https://openalex.org/W2194775991","https://openalex.org/W2211722331","https://openalex.org/W2293349265","https://openalex.org/W2342277278","https://openalex.org/W2464708700","https://openalex.org/W2511691466","https://openalex.org/W2556802233","https://openalex.org/W2560609797","https://openalex.org/W2563408008","https://openalex.org/W2586114507","https://openalex.org/W2594519801","https://openalex.org/W2606202972","https://openalex.org/W2788158258","https://openalex.org/W2797997528","https://openalex.org/W2798270772","https://openalex.org/W2798777114","https://openalex.org/W2810240468","https://openalex.org/W2902302021","https://openalex.org/W2942498895","https://openalex.org/W2945957791","https://openalex.org/W2954258401","https://openalex.org/W2955873422","https://openalex.org/W2962701877","https://openalex.org/W2962928871","https://openalex.org/W2963035165","https://openalex.org/W2963057320","https://openalex.org/W2963121255","https://openalex.org/W2963123724","https://openalex.org/W2963125977","https://openalex.org/W2963158438","https://openalex.org/W2963226018","https://openalex.org/W2963231572","https://openalex.org/W2963281829","https://openalex.org/W2963446712","https://openalex.org/W2963509914","https://openalex.org/W2963517242","https://openalex.org/W2963719584","https://openalex.org/W2963727135","https://openalex.org/W2963830382","https://openalex.org/W2964253930","https://openalex.org/W2970899367","https://openalex.org/W2971686478","https://openalex.org/W2979750740","https://openalex.org/W2981199548","https://openalex.org/W2981983525","https://openalex.org/W2985088149","https://openalex.org/W2990613095","https://openalex.org/W3104141662","https://openalex.org/W3153131045"],"related_works":["https://openalex.org/W4382701072","https://openalex.org/W4256502920","https://openalex.org/W4226090359","https://openalex.org/W2999756192","https://openalex.org/W2975817033","https://openalex.org/W2931688134","https://openalex.org/W2378857091","https://openalex.org/W2377919138","https://openalex.org/W2011624601","https://openalex.org/W103652678"],"abstract_inverted_index":{"Due":[0],"to":[1,28,129],"the":[2,7,34,64,97,108,162,178],"sparsity":[3],"and":[4,37,58,66,79,123,149,177],"irregularity":[5],"of":[6,48,99,165],"point":[8,39,81,146],"cloud":[9,82,147],"data,":[10],"methods":[11,116],"that":[12],"directly":[13],"consume":[14],"points":[15,60,171],"have":[16],"become":[17],"popular.":[18],"Among":[19],"all":[20],"point-based":[21,42],"models,":[22],"graph":[23],"convolutional":[24],"networks":[25,43],"(GCN)":[26],"lead":[27],"notable":[29],"performance":[30,143],"by":[31],"fully":[32],"preserving":[33],"data":[35,51,88],"granularity":[36],"exploiting":[38],"interrelation.":[40],"However,":[41],"spend":[44],"a":[45,73,86,134],"significant":[46],"amount":[47],"time":[49,110],"on":[50,144,167],"structuring":[52,89],"(e.g.,":[53],"Farthest":[54,119],"Point":[55,120],"Sampling":[56,121],"(FPS)":[57,122],"neighbor":[59],"querying),":[61],"which":[62],"limit":[63],"speed":[65,164],"scalability.":[67],"In":[68],"this":[69],"paper,":[70],"we":[71],"present":[72],"method,":[74],"named":[75],"Grid-GCN,":[76],"for":[77],"fast":[78],"scalable":[80],"learning.":[83],"Grid-GCN":[84,140,160],"uses":[85],"novel":[87],"strategy,":[90],"Coverage-Aware":[91],"Grid":[92,135],"Query":[93],"(CAGQ).":[94],"By":[95],"leveraging":[96],"efficiency":[98],"grid":[100],"space,":[101],"CAGQ":[102,126],"improves":[103],"spatial":[104],"coverage":[105],"while":[106],"reducing":[107],"theoretical":[109],"complexity.":[111],"Compared":[112],"with":[113,152],"popular":[114],"sampling":[115],"such":[117],"as":[118,172],"Ball":[124],"Query,":[125],"achieves":[127,141,161],"up":[128],"50":[130],"times":[131],"speed-up.":[132],"With":[133],"Context":[136],"Aggregation":[137],"(GCA)":[138],"module,":[139],"state-of-the-art":[142],"major":[145],"classification":[148],"segmentation":[150],"benchmarks":[151],"significantly":[153],"faster":[154],"runtime":[155],"than":[156],"previous":[157],"studies.":[158],"Remarkably,":[159],"inference":[163],"50FPS":[166],"ScanNet":[168],"using":[169],"81920":[170],"input.":[173],"The":[174],"supplementary":[175],"xharlie.github.io/papers/GGCN_supCamReady.pdf":[176],"code":[179],"github.com/xharlie/Grid-GCN":[180],"are":[181],"released.":[182]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3035002114","counts_by_year":[{"year":2024,"cited_by_count":33},{"year":2023,"cited_by_count":54},{"year":2022,"cited_by_count":62},{"year":2021,"cited_by_count":57},{"year":2020,"cited_by_count":12},{"year":2019,"cited_by_count":1}],"updated_date":"2025-01-04T09:29:40.519134","created_date":"2020-06-19"}