{"id":"https://openalex.org/W2962954622","doi":"https://doi.org/10.1109/cvpr.2019.01112","title":"CrowdPose: Efficient Crowded Scenes Pose Estimation and a New Benchmark","display_name":"CrowdPose: Efficient Crowded Scenes Pose Estimation and a New Benchmark","publication_year":2019,"publication_date":"2019-06-01","ids":{"openalex":"https://openalex.org/W2962954622","doi":"https://doi.org/10.1109/cvpr.2019.01112","mag":"2962954622"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr.2019.01112","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1812.00324","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5010175792","display_name":"Jiefeng Li","orcid":"https://orcid.org/0000-0003-1932-8914"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiefeng Li","raw_affiliation_strings":["Shanghai Jiao Tong University"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiao Tong University","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100428572","display_name":"Can Wang","orcid":"https://orcid.org/0000-0002-2890-0057"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Can Wang","raw_affiliation_strings":["SJTU; Shanghai Jiao Tong University"],"affiliations":[{"raw_affiliation_string":"SJTU; Shanghai Jiao Tong University","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043239430","display_name":"Hao Zhu","orcid":"https://orcid.org/0000-0003-1596-4366"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hao Zhu","raw_affiliation_strings":["Shanghai Jiao Tong University"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiao Tong University","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026383600","display_name":"Yihuan Mao","orcid":"https://orcid.org/0000-0001-5748-2109"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yihuan Mao","raw_affiliation_strings":["Tsinghua Univerisity"],"affiliations":[{"raw_affiliation_string":"Tsinghua Univerisity","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061763793","display_name":"Hao-Shu Fang","orcid":"https://orcid.org/0000-0002-0758-0293"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hao-Shu Fang","raw_affiliation_strings":["SJTU; Shanghai Jiao Tong University"],"affiliations":[{"raw_affiliation_string":"SJTU; Shanghai Jiao Tong University","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5010726528","display_name":"Cewu Lu","orcid":null},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Cewu Lu","raw_affiliation_strings":["Shanghai Jiao Tong University"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiao Tong University","institution_ids":["https://openalex.org/I183067930"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":498,"citation_normalized_percentile":{"value":0.999832,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.64608806}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8061981},{"id":"https://openalex.org/C52102323","wikidata":"https://www.wikidata.org/wiki/Q1671968","display_name":"Pose","level":2,"score":0.7385002},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.72930163},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.68976784},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.64608806},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.6075445},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.51933706},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.48039892},{"id":"https://openalex.org/C96250715","wikidata":"https://www.wikidata.org/wiki/Q965330","display_name":"Estimation","level":2,"score":0.4729112},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.45798126},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.076227844},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.07144666},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr.2019.01112","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1812.00324","pdf_url":"https://arxiv.org/pdf/1812.00324","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1812.00324","pdf_url":"https://arxiv.org/pdf/1812.00324","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":44,"referenced_works":["https://openalex.org/W1511568086","https://openalex.org/W1861492603","https://openalex.org/W1932979330","https://openalex.org/W2005124214","https://openalex.org/W2031489346","https://openalex.org/W2034014085","https://openalex.org/W2059185043","https://openalex.org/W2060022598","https://openalex.org/W2064675550","https://openalex.org/W2070339405","https://openalex.org/W2080873731","https://openalex.org/W2135533529","https://openalex.org/W2143478373","https://openalex.org/W2168117308","https://openalex.org/W2307770531","https://openalex.org/W2514518917","https://openalex.org/W2559085405","https://openalex.org/W2613718673","https://openalex.org/W2742737904","https://openalex.org/W2768477045","https://openalex.org/W2780608998","https://openalex.org/W2796347433","https://openalex.org/W2798453399","https://openalex.org/W2798542761","https://openalex.org/W2798734012","https://openalex.org/W2819476901","https://openalex.org/W2883697687","https://openalex.org/W2891377836","https://openalex.org/W2901532862","https://openalex.org/W2953106684","https://openalex.org/W2962730651","https://openalex.org/W2962773068","https://openalex.org/W2963016543","https://openalex.org/W2963150697","https://openalex.org/W2963230407","https://openalex.org/W2963402313","https://openalex.org/W2963598138","https://openalex.org/W2963708869","https://openalex.org/W2963781481","https://openalex.org/W2964016027","https://openalex.org/W2964221239","https://openalex.org/W3012573144","https://openalex.org/W4251519580","https://openalex.org/W4293584584"],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4321353415","https://openalex.org/W4246352526","https://openalex.org/W4230315250","https://openalex.org/W2964084369","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2086519370","https://openalex.org/W2028665553"],"abstract_inverted_index":{"Multi-person":[0],"pose":[1,26,66,89],"estimation":[2,27,67,90],"is":[3,112],"fundamental":[4],"to":[5,61,75,114],"many":[6,38],"computer":[7],"vision":[8],"tasks":[9],"and":[10,35,58,71,92,103,120,138],"has":[11],"made":[12],"significant":[13],"progress":[14],"in":[15,28,37,68,117,123],"recent":[16],"years.":[17],"However,":[18],"few":[19],"previous":[20],"methods":[21,131],"explored":[22],"the":[23,63,69,107,129,144],"problem":[24,64],"of":[25,65,82,147],"crowded":[29,118],"scenes":[30,119],"while":[31],"it":[32],"remains":[33],"challenging":[34],"inevitable":[36,115],"scenarios.":[39],"Moreover,":[40],"current":[41],"benchmarks":[42],"cannot":[43],"provide":[44],"an":[45],"appropriate":[46],"evaluation":[47],"for":[48,100],"such":[49],"cases.":[50],"In":[51],"this":[52],"paper,":[53],"we":[54],"propose":[55],"a":[56,72],"novel":[57],"efficient":[59,122],"method":[60,111,127],"tackle":[62],"crowd":[70],"new":[73],"dataset":[74,134,142],"better":[76],"evaluate":[77],"algorithms.":[78],"Our":[79],"model":[80],"consists":[81],"two":[83],"key":[84],"components:":[85],"joint-candidate":[86],"single":[87],"person":[88],"(SPPE)":[91],"global":[93,104],"maximum":[94],"joints":[95],"association.":[96],"With":[97],"multi-peak":[98],"prediction":[99],"each":[101],"joint":[102],"association":[105],"using":[106],"graph":[108],"model,":[109],"our":[110,148],"robust":[113],"interference":[116],"very":[121],"inference.":[124],"The":[125],"proposed":[126],"surpasses":[128],"state-of-the-art":[130],"on":[132,140],"CrowdPose":[133],"by":[135],"5.2":[136],"mAP":[137],"results":[139],"MSCOCO":[141],"demonstrate":[143],"generalization":[145],"ability":[146],"method.":[149]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2962954622","counts_by_year":[{"year":2025,"cited_by_count":10},{"year":2024,"cited_by_count":76},{"year":2023,"cited_by_count":120},{"year":2022,"cited_by_count":112},{"year":2021,"cited_by_count":94},{"year":2020,"cited_by_count":67},{"year":2019,"cited_by_count":13},{"year":2018,"cited_by_count":1}],"updated_date":"2025-04-23T03:02:41.817193","created_date":"2019-07-30"}