{"id":"https://openalex.org/W2964207322","doi":"https://doi.org/10.1109/cvpr.2019.01017","title":"Dance With Flow: Two-In-One Stream Action Detection","display_name":"Dance With Flow: Two-In-One Stream Action Detection","publication_year":2019,"publication_date":"2019-06-01","ids":{"openalex":"https://openalex.org/W2964207322","doi":"https://doi.org/10.1109/cvpr.2019.01017","mag":"2964207322"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr.2019.01017","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://pure.uva.nl/ws/files/49577196/08953720.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072790694","display_name":"Jiaojiao Zhao","orcid":"https://orcid.org/0000-0002-4448-7602"},"institutions":[{"id":"https://openalex.org/I887064364","display_name":"University of Amsterdam","ror":"https://ror.org/04dkp9463","country_code":"NL","type":"education","lineage":["https://openalex.org/I887064364"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Jiaojiao Zhao","raw_affiliation_strings":["University of Amsterdam"],"affiliations":[{"raw_affiliation_string":"University of Amsterdam","institution_ids":["https://openalex.org/I887064364"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5024508073","display_name":"Cees G. M. Snoek","orcid":"https://orcid.org/0000-0001-9092-1556"},"institutions":[{"id":"https://openalex.org/I887064364","display_name":"University of Amsterdam","ror":"https://ror.org/04dkp9463","country_code":"NL","type":"education","lineage":["https://openalex.org/I887064364"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Cees G. M. Snoek","raw_affiliation_strings":["University of Amsterdam"],"affiliations":[{"raw_affiliation_string":"University of Amsterdam","institution_ids":["https://openalex.org/I887064364"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":86,"citation_normalized_percentile":{"value":0.999829,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9856,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.8557524},{"id":"https://openalex.org/keywords/optical-flow","display_name":"Optical Flow","score":0.6244861}],"concepts":[{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.8557524},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7662984},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6563152},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.651307},{"id":"https://openalex.org/C155542232","wikidata":"https://www.wikidata.org/wiki/Q736111","display_name":"Optical flow","level":3,"score":0.6244861},{"id":"https://openalex.org/C104114177","wikidata":"https://www.wikidata.org/wiki/Q79782","display_name":"Motion (physics)","level":2,"score":0.574806},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5366103},{"id":"https://openalex.org/C38349280","wikidata":"https://www.wikidata.org/wiki/Q1434290","display_name":"Flow (mathematics)","level":2,"score":0.4928758},{"id":"https://openalex.org/C204241405","wikidata":"https://www.wikidata.org/wiki/Q461499","display_name":"Transformation (genetics)","level":3,"score":0.4920768},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4053729},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.14908549},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.13056618},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.12776023},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr.2019.01017","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://hdl.handle.net/11245.1/9562d61f-125c-44a4-a243-f214f0acb671","pdf_url":"https://pure.uva.nl/ws/files/49577196/08953720.pdf","source":{"id":"https://openalex.org/S4306401571","display_name":"Wiardi Beckman Foundation (Wiardi Beckman Foundation)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1904.00696","pdf_url":"https://arxiv.org/pdf/1904.00696","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://pure.uva.nl/ws/files/49577193/ZhaoCVPR2019.pdf","pdf_url":"https://pure.uva.nl/ws/files/49577193/ZhaoCVPR2019.pdf","source":{"id":"https://openalex.org/S4306401571","display_name":"Wiardi Beckman Foundation (Wiardi Beckman Foundation)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://hdl.handle.net/11245.1/9562d61f-125c-44a4-a243-f214f0acb671","pdf_url":"https://pure.uva.nl/ws/files/49577196/08953720.pdf","source":{"id":"https://openalex.org/S4306401571","display_name":"Wiardi Beckman Foundation (Wiardi Beckman Foundation)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":58,"referenced_works":["https://openalex.org/W1487600774","https://openalex.org/W1536680647","https://openalex.org/W1595717062","https://openalex.org/W1797109199","https://openalex.org/W1836465849","https://openalex.org/W1867429401","https://openalex.org/W1923332106","https://openalex.org/W1945129080","https://openalex.org/W2009139688","https://openalex.org/W2024868105","https://openalex.org/W2034014085","https://openalex.org/W2095661305","https://openalex.org/W2097342496","https://openalex.org/W2101194540","https://openalex.org/W2123477621","https://openalex.org/W2123557418","https://openalex.org/W2131311058","https://openalex.org/W2145943327","https://openalex.org/W2156303437","https://openalex.org/W2175354415","https://openalex.org/W2295107390","https://openalex.org/W2295628903","https://openalex.org/W2342662179","https://openalex.org/W24089286","https://openalex.org/W2460134573","https://openalex.org/W2476839805","https://openalex.org/W2519080876","https://openalex.org/W2545656684","https://openalex.org/W2603777577","https://openalex.org/W2605704591","https://openalex.org/W2611596598","https://openalex.org/W2612076919","https://openalex.org/W2613718673","https://openalex.org/W2618799552","https://openalex.org/W2727849499","https://openalex.org/W2760103357","https://openalex.org/W2883275382","https://openalex.org/W2883429621","https://openalex.org/W2884146233","https://openalex.org/W2885917416","https://openalex.org/W2895738954","https://openalex.org/W2949117887","https://openalex.org/W2953106684","https://openalex.org/W2962722947","https://openalex.org/W2962790054","https://openalex.org/W2962803561","https://openalex.org/W2963161140","https://openalex.org/W2963246338","https://openalex.org/W2963525668","https://openalex.org/W2963814095","https://openalex.org/W2963823258","https://openalex.org/W2964175066","https://openalex.org/W2964318666","https://openalex.org/W3099129229","https://openalex.org/W3106250896","https://openalex.org/W4295238618","https://openalex.org/W764651262","https://openalex.org/W787785461"],"related_works":["https://openalex.org/W4386083130","https://openalex.org/W4286646204","https://openalex.org/W4231775656","https://openalex.org/W3111737715","https://openalex.org/W2564375980","https://openalex.org/W2117442182","https://openalex.org/W2069571255","https://openalex.org/W2059475927","https://openalex.org/W2046435967","https://openalex.org/W2023355163"],"abstract_inverted_index":{"The":[0,14,80],"goal":[1],"of":[2,11,29,117],"this":[3],"paper":[4],"is":[5,63,82],"to":[6,38,70,103],"detect":[7],"the":[8,27,66,76,100,113,118],"spatio-temporal":[9],"extent":[10],"an":[12],"action.":[13],"two-stream":[15,89,120],"detection":[16,91,108],"network":[17,48],"based":[18],"on":[19,129],"RGB":[20,40,78,105],"and":[21,33,41,93,115,132],"flow":[22,60],"provides":[23],"state-of-the-art":[24,119],"accuracy":[25],"at":[26],"expense":[28],"a":[30,44],"large":[31],"model-size":[32],"heavy":[34],"computation.":[35],"We":[36],"propose":[37],"embed":[39],"optical-flow":[42],"into":[43],"single":[45],"two-in-one":[46,123],"stream":[47,124],"with":[49],"new":[50],"layers.":[51],"A":[52],"motion":[53,57,67,101],"condition":[54,102],"layer":[55,69],"extracts":[56],"information":[58],"from":[59],"images,":[61],"which":[62],"leveraged":[64],"by":[65],"modulation":[68],"generate":[71],"transformation":[72],"parameters":[73,116],"for":[74],"modulating":[75],"low-level":[77],"features.":[79],"method":[81],"easily":[83],"embedded":[84],"in":[85],"existing":[86],"appearance-":[87],"or":[88],"action":[90],"networks,":[92],"trained":[94],"end-to-end.":[95],"Experiments":[96],"demonstrate":[97],"that":[98],"leveraging":[99],"modulate":[104],"features":[106],"improves":[107],"accuracy.":[109],"With":[110],"only":[111],"half":[112],"computation":[114],"methods,":[121],"our":[122],"still":[125],"achieves":[126],"impressive":[127],"results":[128],"UCF101-24,":[130],"UCFSports":[131],"J-HMDB.":[133]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2964207322","counts_by_year":[{"year":2024,"cited_by_count":9},{"year":2023,"cited_by_count":11},{"year":2022,"cited_by_count":22},{"year":2021,"cited_by_count":23},{"year":2020,"cited_by_count":20},{"year":2019,"cited_by_count":1}],"updated_date":"2025-01-05T07:53:56.061605","created_date":"2019-07-30"}