{"id":"https://openalex.org/W2948080074","doi":"https://doi.org/10.1109/cvpr.2019.00909","title":"Semantic Correlation Promoted Shape-Variant Context for Segmentation","display_name":"Semantic Correlation Promoted Shape-Variant Context for Segmentation","publication_year":2019,"publication_date":"2019-06-01","ids":{"openalex":"https://openalex.org/W2948080074","doi":"https://doi.org/10.1109/cvpr.2019.00909","mag":"2948080074"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr.2019.00909","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://dr.ntu.edu.sg/bitstream/10356/140371/2/Semantic%20correlation%20promoted%20shape-variant%20context%20for%20segmentation.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5036631624","display_name":"Henghui Ding","orcid":"https://orcid.org/0000-0003-4868-6526"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"funder","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Henghui Ding","raw_affiliation_strings":["School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085533260","display_name":"Xudong Jiang","orcid":"https://orcid.org/0000-0002-9104-2315"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"funder","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Xudong Jiang","raw_affiliation_strings":["School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048015379","display_name":"Bing Shuai","orcid":"https://orcid.org/0000-0001-5811-9950"},"institutions":[{"id":"https://openalex.org/I1311688040","display_name":"Amazon (United States)","ror":"https://ror.org/04mv4n011","country_code":"US","type":"funder","lineage":["https://openalex.org/I1311688040"]},{"id":"https://openalex.org/I58610484","display_name":"Seattle University","ror":"https://ror.org/02jqc0m91","country_code":"US","type":"education","lineage":["https://openalex.org/I58610484"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Bing Shuai","raw_affiliation_strings":["Amazon, Seattle, United States"],"affiliations":[{"raw_affiliation_string":"Amazon, Seattle, United States","institution_ids":["https://openalex.org/I1311688040","https://openalex.org/I58610484"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010675602","display_name":"A. Q. Liu","orcid":"https://orcid.org/0000-0002-0126-5778"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"funder","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Ai Qun Liu","raw_affiliation_strings":["School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100367353","display_name":"Gang Wang","orcid":"https://orcid.org/0000-0002-1816-1457"},"institutions":[{"id":"https://openalex.org/I45928872","display_name":"Alibaba Group (China)","ror":"https://ror.org/00k642b80","country_code":"CN","type":"company","lineage":["https://openalex.org/I45928872"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Gang Wang","raw_affiliation_strings":["Alibaba Group, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Alibaba Group, Hangzhou, China","institution_ids":["https://openalex.org/I45928872"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":7.786,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":179,"citation_normalized_percentile":{"value":0.999886,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":"8877","last_page":"8886"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.58850443},{"id":"https://openalex.org/keywords/spatial-contextual-awareness","display_name":"Spatial contextual awareness","score":0.4604903}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7899004},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.74822867},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.70350647},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.63060516},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.58850443},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.5641545},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5183936},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5153498},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.48035774},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.46424732},{"id":"https://openalex.org/C64754055","wikidata":"https://www.wikidata.org/wiki/Q7574053","display_name":"Spatial contextual awareness","level":2,"score":0.4604903},{"id":"https://openalex.org/C184337299","wikidata":"https://www.wikidata.org/wiki/Q1437428","display_name":"Semantics (computer science)","level":2,"score":0.43039632},{"id":"https://openalex.org/C4679612","wikidata":"https://www.wikidata.org/wiki/Q866298","display_name":"Aggregate (composite)","level":2,"score":0.41251397},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.28030056},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.13214245},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.112094104},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr.2019.00909","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://hdl.handle.net/10356/140371","pdf_url":"https://dr.ntu.edu.sg/bitstream/10356/140371/2/Semantic%20correlation%20promoted%20shape-variant%20context%20for%20segmentation.pdf","source":{"id":"https://openalex.org/S4306402609","display_name":"DR-NTU (Nanyang Technological University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I172675005","host_organization_name":"Nanyang Technological University","host_organization_lineage":["https://openalex.org/I172675005"],"host_organization_lineage_names":["Nanyang Technological University"],"type":"repository"},"license":null,"license_id":null,"version":"acceptedVersion","is_accepted":true,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://hdl.handle.net/10356/140371","pdf_url":"https://dr.ntu.edu.sg/bitstream/10356/140371/2/Semantic%20correlation%20promoted%20shape-variant%20context%20for%20segmentation.pdf","source":{"id":"https://openalex.org/S4306402609","display_name":"DR-NTU (Nanyang Technological University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I172675005","host_organization_name":"Nanyang Technological University","host_organization_lineage":["https://openalex.org/I172675005"],"host_organization_lineage_names":["Nanyang Technological University"],"type":"repository"},"license":null,"license_id":null,"version":"acceptedVersion","is_accepted":true,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":90,"referenced_works":["https://openalex.org/W1495267108","https://openalex.org/W1546771929","https://openalex.org/W1686810756","https://openalex.org/W1745334888","https://openalex.org/W1836465849","https://openalex.org/W1903029394","https://openalex.org/W1909234690","https://openalex.org/W1913356549","https://openalex.org/W1923697677","https://openalex.org/W1938976761","https://openalex.org/W1948751323","https://openalex.org/W2022508996","https://openalex.org/W2051458493","https://openalex.org/W2090518410","https://openalex.org/W2097117768","https://openalex.org/W2104408738","https://openalex.org/W2105340328","https://openalex.org/W2117539524","https://openalex.org/W2124592697","https://openalex.org/W2125215748","https://openalex.org/W2125849446","https://openalex.org/W2154644822","https://openalex.org/W2158842374","https://openalex.org/W2161236525","https://openalex.org/W2163605009","https://openalex.org/W2194775991","https://openalex.org/W2286929393","https://openalex.org/W2298838696","https://openalex.org/W2309415944","https://openalex.org/W2330337224","https://openalex.org/W2340897893","https://openalex.org/W2406270520","https://openalex.org/W2412782625","https://openalex.org/W2461677039","https://openalex.org/W2508741746","https://openalex.org/W2531409750","https://openalex.org/W2559597482","https://openalex.org/W2560023338","https://openalex.org/W2561196672","https://openalex.org/W2563705555","https://openalex.org/W2598666589","https://openalex.org/W2601564443","https://openalex.org/W2604603079","https://openalex.org/W2607180574","https://openalex.org/W2623546809","https://openalex.org/W2753588254","https://openalex.org/W2758714918","https://openalex.org/W2773708732","https://openalex.org/W2785119271","https://openalex.org/W2787091153","https://openalex.org/W2789983685","https://openalex.org/W2798591388","https://openalex.org/W2798791840","https://openalex.org/W2799166040","https://openalex.org/W2799213142","https://openalex.org/W2799217622","https://openalex.org/W2887761692","https://openalex.org/W2888340395","https://openalex.org/W2895340641","https://openalex.org/W2895420332","https://openalex.org/W2899002405","https://openalex.org/W2910805834","https://openalex.org/W2928594414","https://openalex.org/W2950096400","https://openalex.org/W2952577426","https://openalex.org/W2952793010","https://openalex.org/W2953139137","https://openalex.org/W2962802951","https://openalex.org/W2962891704","https://openalex.org/W2962949934","https://openalex.org/W2963014573","https://openalex.org/W2963048642","https://openalex.org/W2963108253","https://openalex.org/W2963161243","https://openalex.org/W2963225971","https://openalex.org/W2963318290","https://openalex.org/W2963446712","https://openalex.org/W2963563573","https://openalex.org/W2963679518","https://openalex.org/W2963727650","https://openalex.org/W2963753570","https://openalex.org/W2963758239","https://openalex.org/W2963840672","https://openalex.org/W2963881378","https://openalex.org/W2963948108","https://openalex.org/W2964269771","https://openalex.org/W2964309882","https://openalex.org/W2967591398","https://openalex.org/W2979938149","https://openalex.org/W4294569064"],"related_works":["https://openalex.org/W4391304167","https://openalex.org/W4389256820","https://openalex.org/W4387838477","https://openalex.org/W3103272396","https://openalex.org/W2485872624","https://openalex.org/W2370273288","https://openalex.org/W2368441895","https://openalex.org/W2023578311","https://openalex.org/W1833397253","https://openalex.org/W1800639126"],"abstract_inverted_index":{"Context":[0],"is":[1,36,118],"essential":[2],"for":[3,28,64],"semantic":[4,62,85],"segmentation.":[5],"Due":[6],"to":[7,41,56,67,82,94,163],"the":[8,21,84,88,100,105,115,121,127,134,138,169,177,186],"diverse":[9],"shapes":[10,25],"of":[11,26,87,104,113,129,141,149],"objects":[12,30],"and":[13,24,60,90,175],"their":[14],"complex":[15],"layout":[16],"in":[17],"various":[18,43],"scene":[19],"images,":[20],"spatial":[22,102],"scales":[23],"contexts":[27],"different":[29],"have":[31],"very":[32],"large":[33],"variation.":[34],"It":[35],"thus":[37],"ineffective":[38],"or":[39],"inefficient":[40],"aggregate":[42],"context":[44,139],"information":[45,140],"from":[46,144],"a":[47,58,78,96,110,142,150,159],"predefined":[48,151],"fixed":[49,152],"region.":[50,71,153],"In":[51,131],"this":[52,73,132,155],"work,":[53],"we":[54,75,108],"propose":[55,77,109],"generate":[57,95],"scale-":[59],"shape-variant":[61,111],"mask":[63,123],"each":[65],"pixel":[66,143],"confine":[68],"its":[69,145],"contextual":[70,106],"To":[72],"end,":[74],"first":[76],"novel":[79],"paired":[80],"convolution":[81],"infer":[83],"correlation":[86],"pair":[89],"based":[91],"on":[92,185],"that":[93,124],"shape":[97,122],"mask.":[98],"Using":[99],"inferred":[101],"scope":[103],"region,":[107],"convolution,":[112],"which":[114],"receptive":[116],"field":[117],"controlled":[119],"by":[120,168],"varies":[125],"with":[126],"appearance":[128],"input.":[130],"way,":[133],"proposed":[135,178],"network":[136,180],"aggregates":[137],"semantic-correlated":[146],"region":[147],"instead":[148],"Furthermore,":[154],"work":[156],"also":[157],"proposes":[158],"labeling":[160],"denoising":[161],"model":[162],"reduce":[164],"wrong":[165],"predictions":[166],"caused":[167],"noisy":[170],"low-level":[171],"features.":[172],"Without":[173],"bells":[174],"whistles,":[176],"segmentation":[179,189],"achieves":[181],"new":[182],"state-of-the-arts":[183],"consistently":[184],"six":[187],"public":[188],"datasets.":[190]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2948080074","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":14},{"year":2023,"cited_by_count":19},{"year":2022,"cited_by_count":33},{"year":2021,"cited_by_count":49},{"year":2020,"cited_by_count":37},{"year":2019,"cited_by_count":24},{"year":2018,"cited_by_count":1}],"updated_date":"2025-04-15T19:15:33.264443","created_date":"2019-06-14"}