{"id":"https://openalex.org/W2963483509","doi":"https://doi.org/10.1109/cvpr.2018.00059","title":"PhaseNet for Video Frame Interpolation","display_name":"PhaseNet for Video Frame Interpolation","publication_year":2018,"publication_date":"2018-06-01","ids":{"openalex":"https://openalex.org/W2963483509","doi":"https://doi.org/10.1109/cvpr.2018.00059","mag":"2963483509"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr.2018.00059","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":"https://arxiv.org/pdf/1804.00884","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5047393006","display_name":"Simone Meyer","orcid":null},"institutions":[{"id":"https://openalex.org/I35440088","display_name":"ETH Zurich","ror":"https://ror.org/05a28rw58","country_code":"CH","type":"education","lineage":["https://openalex.org/I2799323385","https://openalex.org/I35440088"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Simone Meyer","raw_affiliation_strings":["Department of Computer Science, ETH Zurich"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, ETH Zurich","institution_ids":["https://openalex.org/I35440088"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075419871","display_name":"Abdelaziz Djelouah","orcid":"https://orcid.org/0000-0002-0727-1247"},"institutions":[{"id":"https://openalex.org/I4210142140","display_name":"Walt Disney (United States)","ror":"https://ror.org/04eg47h42","country_code":"US","type":"company","lineage":["https://openalex.org/I4210142140"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Abdelaziz Djelouah","raw_affiliation_strings":["Disney Research"],"affiliations":[{"raw_affiliation_string":"Disney Research","institution_ids":["https://openalex.org/I4210142140"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041664883","display_name":"Brian McWilliams","orcid":"https://orcid.org/0009-0002-7433-1702"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Brian McWilliams","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5053984717","display_name":"Alexander Sorkine\u2010Hornung","orcid":null},"institutions":[{"id":"https://openalex.org/I4210142140","display_name":"Walt Disney (United States)","ror":"https://ror.org/04eg47h42","country_code":"US","type":"company","lineage":["https://openalex.org/I4210142140"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Alexander Sorkine-Hornung","raw_affiliation_strings":["Disney Research"],"affiliations":[{"raw_affiliation_string":"Disney Research","institution_ids":["https://openalex.org/I4210142140"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033076979","display_name":"Markus Gro\u00df","orcid":"https://orcid.org/0009-0003-9324-779X"},"institutions":[{"id":"https://openalex.org/I35440088","display_name":"ETH Zurich","ror":"https://ror.org/05a28rw58","country_code":"CH","type":"education","lineage":["https://openalex.org/I2799323385","https://openalex.org/I35440088"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Markus Gross","raw_affiliation_strings":["Department of Computer Science, ETH Zurich"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, ETH Zurich","institution_ids":["https://openalex.org/I35440088"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5052388616","display_name":"Christopher Schroers","orcid":"https://orcid.org/0000-0003-1473-1878"},"institutions":[{"id":"https://openalex.org/I4210142140","display_name":"Walt Disney (United States)","ror":"https://ror.org/04eg47h42","country_code":"US","type":"company","lineage":["https://openalex.org/I4210142140"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Christopher Schroers","raw_affiliation_strings":["Disney Research"],"affiliations":[{"raw_affiliation_string":"Disney Research","institution_ids":["https://openalex.org/I4210142140"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":7.236,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":180,"citation_normalized_percentile":{"value":0.999865,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":"498","last_page":"507"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/motion-interpolation","display_name":"Motion interpolation","score":0.87003714},{"id":"https://openalex.org/keywords/interpolation","display_name":"Interpolation","score":0.61749166},{"id":"https://openalex.org/keywords/heuristics","display_name":"Heuristics","score":0.53917634},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep Neural Networks","score":0.41130298}],"concepts":[{"id":"https://openalex.org/C72560505","wikidata":"https://www.wikidata.org/wiki/Q204510","display_name":"Motion interpolation","level":5,"score":0.87003714},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7959137},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.747289},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.6585245},{"id":"https://openalex.org/C137800194","wikidata":"https://www.wikidata.org/wiki/Q11713455","display_name":"Interpolation (computer graphics)","level":3,"score":0.61749166},{"id":"https://openalex.org/C127705205","wikidata":"https://www.wikidata.org/wiki/Q5748245","display_name":"Heuristics","level":2,"score":0.53917634},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.52428144},{"id":"https://openalex.org/C126042441","wikidata":"https://www.wikidata.org/wiki/Q1324888","display_name":"Frame (networking)","level":2,"score":0.5159167},{"id":"https://openalex.org/C104114177","wikidata":"https://www.wikidata.org/wiki/Q79782","display_name":"Motion (physics)","level":2,"score":0.48300874},{"id":"https://openalex.org/C10161872","wikidata":"https://www.wikidata.org/wiki/Q557891","display_name":"Motion estimation","level":2,"score":0.43169135},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.41439724},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.41130298},{"id":"https://openalex.org/C167510206","wikidata":"https://www.wikidata.org/wiki/Q2835824","display_name":"Block-matching algorithm","level":4,"score":0.28352427},{"id":"https://openalex.org/C65483669","wikidata":"https://www.wikidata.org/wiki/Q3536669","display_name":"Video processing","level":2,"score":0.17261612},{"id":"https://openalex.org/C202474056","wikidata":"https://www.wikidata.org/wiki/Q1931635","display_name":"Video tracking","level":3,"score":0.16721052},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr.2018.00059","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1804.00884","pdf_url":"https://arxiv.org/pdf/1804.00884","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1804.00884","pdf_url":"https://arxiv.org/pdf/1804.00884","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":47,"referenced_works":["https://openalex.org/W1665214252","https://openalex.org/W1686810756","https://openalex.org/W1776042733","https://openalex.org/W1836465849","https://openalex.org/W1899297403","https://openalex.org/W1905052409","https://openalex.org/W1951771206","https://openalex.org/W1965004103","https://openalex.org/W1990370049","https://openalex.org/W2014008866","https://openalex.org/W2031912957","https://openalex.org/W2097117768","https://openalex.org/W2107790757","https://openalex.org/W2109812093","https://openalex.org/W2127006916","https://openalex.org/W2147253850","https://openalex.org/W2155302366","https://openalex.org/W2158919891","https://openalex.org/W2163605009","https://openalex.org/W2163922914","https://openalex.org/W2194775991","https://openalex.org/W2259950157","https://openalex.org/W2294900216","https://openalex.org/W2296073425","https://openalex.org/W2305401973","https://openalex.org/W2348664362","https://openalex.org/W2470139095","https://openalex.org/W2470539402","https://openalex.org/W2483471159","https://openalex.org/W2520028865","https://openalex.org/W2520707650","https://openalex.org/W2551052086","https://openalex.org/W2560474170","https://openalex.org/W2586480386","https://openalex.org/W2604329646","https://openalex.org/W2605060370","https://openalex.org/W2605718987","https://openalex.org/W2916743882","https://openalex.org/W2919115771","https://openalex.org/W2949099979","https://openalex.org/W2962835968","https://openalex.org/W2963125871","https://openalex.org/W2963547393","https://openalex.org/W2964251418","https://openalex.org/W4297772798","https://openalex.org/W4320013936","https://openalex.org/W764651262"],"related_works":["https://openalex.org/W2687972263","https://openalex.org/W2511137960","https://openalex.org/W2464360982","https://openalex.org/W2395873996","https://openalex.org/W2140468889","https://openalex.org/W2122456626","https://openalex.org/W2098025439","https://openalex.org/W2029249305","https://openalex.org/W2006617887","https://openalex.org/W1973734426"],"abstract_inverted_index":{"Most":[0],"approaches":[1,34,140],"for":[2,72,141],"video":[3,142],"frame":[4,143],"interpolation":[5,144],"require":[6],"accurate":[7],"dense":[8],"correspondences":[9],"to":[10,39,47,64,87,122,135],"synthesize":[11],"an":[12],"in-between":[13],"frame.":[14,115],"Therefore,":[15],"they":[16,68],"do":[17],"not":[18],"perform":[19],"well":[20],"in":[21,128],"challenging":[22,90,146],"scenarios":[23,91],"with":[24,95],"e.g.":[25],"lighting":[26],"changes":[27],"or":[28],"motion":[29,41,59],"blur.":[30],"Recent":[31],"deep":[32,137],"learning":[33,138],"that":[35,54,84,106,118],"rely":[36],"on":[37,145],"kernels":[38],"represent":[40],"can":[42],"only":[43,70],"alleviate":[44],"these":[45],"problems":[46],"some":[48],"extent.":[49],"In":[50],"those":[51],"cases,":[52],"methods":[53,130],"use":[55],"a":[56,73,80,102],"per-pixel":[57],"phase-based":[58,129],"representation":[60],"have":[61],"been":[62],"shown":[63],"work":[65],"well.":[66],"However,":[67],"are":[69],"applicable":[71],"limited":[74],"amount":[75],"of":[76,101,112],"motion.":[77,97],"We":[78,116],"propose":[79],"new":[81],"approach,":[82],"PhaseNet,":[83],"is":[85,120],"designed":[86],"robustly":[88],"handle":[89],"while":[92],"also":[93,132],"coping":[94],"larger":[96],"Our":[98],"approach":[99],"consists":[100],"neural":[103],"network":[104],"decoder":[105],"directly":[107],"estimates":[108],"the":[109,113,123],"phase":[110],"decomposition":[111],"intermediate":[114],"show":[117],"this":[119],"superior":[121],"hand-crafted":[124],"heuristics":[125],"previously":[126],"used":[127],"and":[131],"compares":[133],"favorably":[134],"recent":[136],"based":[139],"datasets.":[147]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963483509","counts_by_year":[{"year":2024,"cited_by_count":16},{"year":2023,"cited_by_count":29},{"year":2022,"cited_by_count":33},{"year":2021,"cited_by_count":33},{"year":2020,"cited_by_count":41},{"year":2019,"cited_by_count":27},{"year":2018,"cited_by_count":1}],"updated_date":"2024-12-31T04:46:02.297205","created_date":"2019-07-30"}