{"id":"https://openalex.org/W2150738795","doi":"https://doi.org/10.1109/cvpr.2008.4587670","title":"Large-scale manifold learning","display_name":"Large-scale manifold learning","publication_year":2008,"publication_date":"2008-06-01","ids":{"openalex":"https://openalex.org/W2150738795","doi":"https://doi.org/10.1109/cvpr.2008.4587670","mag":"2150738795"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr.2008.4587670","pdf_url":null,"source":{"id":"https://openalex.org/S4363607795","display_name":"2009 IEEE Conference on Computer Vision and Pattern Recognition","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":"http://www-2.cs.cmu.edu/~skumar/largeManifold.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5029768722","display_name":"Ameet Talwalkar","orcid":"https://orcid.org/0000-0001-6650-1893"},"institutions":[{"id":"https://openalex.org/I36672615","display_name":"Courant Institute of Mathematical Sciences","ror":"https://ror.org/037tm7f56","country_code":"US","type":"education","lineage":["https://openalex.org/I36672615","https://openalex.org/I57206974"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ameet Talwalkar","raw_affiliation_strings":["Courant Institute, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Courant Institute, New York, NY, USA","institution_ids":["https://openalex.org/I36672615"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018301052","display_name":"Sanjiv Kumar","orcid":"https://orcid.org/0000-0002-4080-1414"},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"funder","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sanjiv Kumar","raw_affiliation_strings":["Google Research, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Google Research, New York, NY, USA","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5048198161","display_name":"Henry A. Rowley","orcid":null},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"funder","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Henry Rowley","raw_affiliation_strings":["Google Research, Mountain View, CA, USA"],"affiliations":[{"raw_affiliation_string":"Google Research, Mountain View, CA, USA","institution_ids":["https://openalex.org/I1291425158"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":9.338,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":215,"citation_normalized_percentile":{"value":0.987045,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9856,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9698,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/isomap","display_name":"Isomap","score":0.9817952},{"id":"https://openalex.org/keywords/spectral-clustering","display_name":"Spectral Clustering","score":0.6536528},{"id":"https://openalex.org/keywords/manifold","display_name":"Manifold (fluid mechanics)","score":0.4720864}],"concepts":[{"id":"https://openalex.org/C2778626561","wikidata":"https://www.wikidata.org/wiki/Q6086067","display_name":"Isomap","level":4,"score":0.9817952},{"id":"https://openalex.org/C151876577","wikidata":"https://www.wikidata.org/wiki/Q7049464","display_name":"Nonlinear dimensionality reduction","level":3,"score":0.904547},{"id":"https://openalex.org/C70518039","wikidata":"https://www.wikidata.org/wiki/Q16000077","display_name":"Dimensionality reduction","level":2,"score":0.72150147},{"id":"https://openalex.org/C105611402","wikidata":"https://www.wikidata.org/wiki/Q2976589","display_name":"Spectral clustering","level":3,"score":0.6536528},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.64589524},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6165479},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6120803},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5861169},{"id":"https://openalex.org/C529865628","wikidata":"https://www.wikidata.org/wiki/Q1790740","display_name":"Manifold (fluid mechanics)","level":2,"score":0.4720864},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.4691053},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.4674011},{"id":"https://openalex.org/C165700671","wikidata":"https://www.wikidata.org/wiki/Q203484","display_name":"Laplace operator","level":2,"score":0.4648686},{"id":"https://openalex.org/C2779304628","wikidata":"https://www.wikidata.org/wiki/Q3503480","display_name":"Face (sociological concept)","level":2,"score":0.44684452},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.44567397},{"id":"https://openalex.org/C115178988","wikidata":"https://www.wikidata.org/wiki/Q772067","display_name":"Laplacian matrix","level":3,"score":0.4173726},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3338529},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.15625584},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.12609816},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr.2008.4587670","pdf_url":null,"source":{"id":"https://openalex.org/S4363607795","display_name":"2009 IEEE Conference on Computer Vision and Pattern Recognition","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.1673","pdf_url":"http://www-2.cs.cmu.edu/~skumar/largeManifold.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.1673","pdf_url":"http://www-2.cs.cmu.edu/~skumar/largeManifold.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":38,"referenced_works":["https://openalex.org/W1479807131","https://openalex.org/W1485732691","https://openalex.org/W1582482241","https://openalex.org/W174106550","https://openalex.org/W1952127226","https://openalex.org/W1966347620","https://openalex.org/W1967934524","https://openalex.org/W1970576574","https://openalex.org/W198244778","https://openalex.org/W2001141328","https://openalex.org/W2006373179","https://openalex.org/W2006793117","https://openalex.org/W2040387238","https://openalex.org/W2053186076","https://openalex.org/W2093402979","https://openalex.org/W2103318769","https://openalex.org/W2112545207","https://openalex.org/W2116810533","https://openalex.org/W2117553576","https://openalex.org/W2137557016","https://openalex.org/W2145713404","https://openalex.org/W2154034263","https://openalex.org/W2155759509","https://openalex.org/W2156287497","https://openalex.org/W2156718197","https://openalex.org/W2156838815","https://openalex.org/W2160840682","https://openalex.org/W2163581538","https://openalex.org/W2170605888","https://openalex.org/W2294798173","https://openalex.org/W2479500547","https://openalex.org/W2798909945","https://openalex.org/W3004219628","https://openalex.org/W3134067276","https://openalex.org/W4243341520","https://openalex.org/W4245973528","https://openalex.org/W51669927","https://openalex.org/W77383515"],"related_works":["https://openalex.org/W4287375746","https://openalex.org/W3183997925","https://openalex.org/W3124275785","https://openalex.org/W2375574759","https://openalex.org/W2375518579","https://openalex.org/W2366334780","https://openalex.org/W2351371028","https://openalex.org/W2153934661","https://openalex.org/W1606646545","https://openalex.org/W1562785334"],"abstract_inverted_index":{"This":[0],"paper":[1],"examines":[2],"the":[3,19,68,107,113,132],"problem":[4],"of":[5,12,22],"extracting":[6],"low-dimensional":[7,85],"manifold":[8,45],"structure":[9],"given":[10],"millions":[11],"high-dimensional":[13],"face":[14,90],"images.":[15],"Specifically,":[16],"we":[17,52],"address":[18],"computational":[20],"challenges":[21],"nonlinear":[23],"dimensionality":[24],"reduction":[25],"via":[26],"Isomap":[27,118],"and":[28,39,65,72,96,129],"Laplacian":[29,124],"Eigenmaps,":[30],"using":[31],"a":[32,97],"graph":[33],"containing":[34],"about":[35],"18":[36],"million":[37,41,101],"nodes":[38],"65":[40],"edges.":[42],"Since":[43],"most":[44],"learning":[46,84],"techniques":[47,59],"rely":[48],"on":[49,83,126],"spectral":[50,57],"decomposition,":[51],"first":[53,69],"analyze":[54],"two":[55,88],"approximate":[56,117],"decomposition":[58],"for":[60,87],"large":[61,89],"dense":[62],"matrices":[63],"(Nystrom":[64],"column-sampling),":[66],"providing":[67],"direct":[70],"theoretical":[71],"empirical":[73],"comparison":[74],"between":[75],"these":[76],"techniques.":[77],"We":[78],"next":[79],"show":[80,105],"extensive":[81],"experiments":[82],"embeddings":[86],"datasets:":[91],"CMU-PIE":[92,134],"(35":[93],"thousand":[94],"faces)":[95],"web":[98],"dataset":[99],"(18":[100],"faces).":[102],"Our":[103],"comparisons":[104],"that":[106],"Nystrom":[108],"approximation":[109],"is":[110],"superior":[111],"to":[112,120],"column-sampling":[114],"method.":[115],"Furthermore,":[116],"tends":[119],"perform":[121],"better":[122],"than":[123],"Eigenmaps":[125],"both":[127],"clustering":[128],"classification":[130],"with":[131],"labeled":[133],"dataset.":[135]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2150738795","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":9},{"year":2022,"cited_by_count":8},{"year":2021,"cited_by_count":13},{"year":2020,"cited_by_count":8},{"year":2019,"cited_by_count":16},{"year":2018,"cited_by_count":11},{"year":2017,"cited_by_count":15},{"year":2016,"cited_by_count":20},{"year":2015,"cited_by_count":17},{"year":2014,"cited_by_count":20},{"year":2013,"cited_by_count":23},{"year":2012,"cited_by_count":13}],"updated_date":"2025-03-21T09:30:16.259943","created_date":"2016-06-24"}