{"id":"https://openalex.org/W2113032826","doi":"https://doi.org/10.1109/cvpr.2003.1211358","title":"Optimal linear representations of images for object recognition","display_name":"Optimal linear representations of images for object recognition","publication_year":2003,"publication_date":"2003-11-20","ids":{"openalex":"https://openalex.org/W2113032826","doi":"https://doi.org/10.1109/cvpr.2003.1211358","mag":"2113032826"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr.2003.1211358","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102867647","display_name":"Xiuwen Liu","orcid":"https://orcid.org/0000-0002-9320-3872"},"institutions":[{"id":"https://openalex.org/I103163165","display_name":"Florida State University","ror":"https://ror.org/05g3dte14","country_code":"US","type":"funder","lineage":["https://openalex.org/I103163165"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"None Xiuwen Liu","raw_affiliation_strings":["Department of Computer Science, Florida State University, Tallahassee, FL, USA."],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Florida State University, Tallahassee, FL, USA.","institution_ids":["https://openalex.org/I103163165"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086786635","display_name":"Anuj Srivastava","orcid":"https://orcid.org/0000-0001-7406-0338"},"institutions":[{"id":"https://openalex.org/I103163165","display_name":"Florida State University","ror":"https://ror.org/05g3dte14","country_code":"US","type":"funder","lineage":["https://openalex.org/I103163165"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"A. Srivastava","raw_affiliation_strings":["Department of Statistics Florida State University Tallahassee FL"],"affiliations":[{"raw_affiliation_string":"Department of Statistics Florida State University Tallahassee FL","institution_ids":["https://openalex.org/I103163165"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5018426276","display_name":"Kyle A. Gallivan","orcid":"https://orcid.org/0000-0003-4572-4240"},"institutions":[{"id":"https://openalex.org/I103163165","display_name":"Florida State University","ror":"https://ror.org/05g3dte14","country_code":"US","type":"funder","lineage":["https://openalex.org/I103163165"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"K. Gallivan","raw_affiliation_strings":["School of Computational Science and Information Technology, Florida State University, Tallahassee, FL#TAB#"],"affiliations":[{"raw_affiliation_string":"School of Computational Science and Information Technology, Florida State University, Tallahassee, FL#TAB#","institution_ids":["https://openalex.org/I103163165"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.52,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":33,"citation_normalized_percentile":{"value":0.894263,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"I","last_page":"234"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9889,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/linear-classifier","display_name":"Linear classifier","score":0.5281696},{"id":"https://openalex.org/keywords/linear-map","display_name":"Linear map","score":0.47696006},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.42966095}],"concepts":[{"id":"https://openalex.org/C27438332","wikidata":"https://www.wikidata.org/wiki/Q2873","display_name":"Principal component analysis","level":2,"score":0.7708876},{"id":"https://openalex.org/C69738355","wikidata":"https://www.wikidata.org/wiki/Q1228929","display_name":"Linear discriminant analysis","level":2,"score":0.7671354},{"id":"https://openalex.org/C12362212","wikidata":"https://www.wikidata.org/wiki/Q728435","display_name":"Linear subspace","level":2,"score":0.7373265},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.66906},{"id":"https://openalex.org/C64876066","wikidata":"https://www.wikidata.org/wiki/Q5141226","display_name":"Cognitive neuroscience of visual object recognition","level":3,"score":0.66047674},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.65548205},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6538993},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.55988187},{"id":"https://openalex.org/C139532973","wikidata":"https://www.wikidata.org/wiki/Q2679259","display_name":"Linear classifier","level":3,"score":0.5281696},{"id":"https://openalex.org/C49766605","wikidata":"https://www.wikidata.org/wiki/Q207643","display_name":"Linear map","level":2,"score":0.47696006},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.42966095},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.41658664},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.27676654},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.2428625},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr.2003.1211358","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.71,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1493390473","https://openalex.org/W1555683961","https://openalex.org/W1638580935","https://openalex.org/W1970789124","https://openalex.org/W1985093013","https://openalex.org/W2000226237","https://openalex.org/W2006793117","https://openalex.org/W201097857","https://openalex.org/W2026892575","https://openalex.org/W2031929776","https://openalex.org/W2040643815","https://openalex.org/W2045512849","https://openalex.org/W2053887662","https://openalex.org/W2121647436","https://openalex.org/W2123977795","https://openalex.org/W2134262590","https://openalex.org/W2140710100","https://openalex.org/W2141224535","https://openalex.org/W2144791245","https://openalex.org/W2156909104","https://openalex.org/W2158162781","https://openalex.org/W2168777491","https://openalex.org/W2169736182","https://openalex.org/W3002694247"],"related_works":["https://openalex.org/W4382601149","https://openalex.org/W4310720490","https://openalex.org/W2891282097","https://openalex.org/W2444525338","https://openalex.org/W2370040309","https://openalex.org/W2162970382","https://openalex.org/W2089662502","https://openalex.org/W2051311399","https://openalex.org/W1997235926","https://openalex.org/W1975844700"],"abstract_inverted_index":{"Simplicity":[0],"of":[1,50],"linear":[2,24,85,105],"representations":[3,42,57,106],"(of":[4],"images)":[5],"makes":[6],"them":[7],"a":[8,88,91,95],"popular":[9,122],"tool":[10],"in":[11,48],"imaging":[12],"analysis":[13],"applications":[14],"such":[15],"as":[16],"object":[17,74],"recognition":[18,79,110],"and":[19,32,66,76,90],"image":[20],"classification.":[21],"Although":[22],"several":[23],"representations,":[25],"namely":[26],"PCA":[27],"(principal":[28],"component":[29],"analysis),":[30,36],"ICA,":[31],"FDA":[33],"(Fisher":[34],"discriminant":[35],"have":[37],"frequently":[38],"been":[39],"used,":[40],"these":[41],"are":[43],"generally":[44],"far":[45],"from":[46],"optimal":[47,104],"terms":[49],"actual":[51],"application":[52,65],"performance.":[53],"We":[54,116],"argue":[55],"that":[56,78,101],"should":[58],"be":[59],"chosen":[60],"with":[61],"respect":[62],"to":[63,103],"the":[64,67,109],"databases":[68],"involved.":[69],"Fixing":[70],"an":[71],"application,":[72],"say":[73],"recognition,":[75],"assuming":[77],"performance":[80,111],"is":[81],"computable":[82],"for":[83],"any":[84],"basis":[86],"(given":[87],"classifier":[89],"database),":[92],"we":[93],"propose":[94],"Monte":[96],"Carlo":[97],"simulated":[98],"annealing":[99],"method":[100,119],"leads":[102],"by":[107],"maximizing":[108],"over":[112],"all":[113],"fixed-rank":[114],"subspaces.":[115],"illustrate":[117],"this":[118],"on":[120],"two":[121],"databases.":[123]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2113032826","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":5},{"year":2019,"cited_by_count":2},{"year":2018,"cited_by_count":3},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":1},{"year":2014,"cited_by_count":2},{"year":2012,"cited_by_count":3}],"updated_date":"2025-04-21T06:15:15.803069","created_date":"2016-06-24"}