{"id":"https://openalex.org/W4389041528","doi":"https://doi.org/10.1109/csit61576.2023.10324264","title":"Extracting Drug Names From Medical Reports","display_name":"Extracting Drug Names From Medical Reports","publication_year":2023,"publication_date":"2023-10-19","ids":{"openalex":"https://openalex.org/W4389041528","doi":"https://doi.org/10.1109/csit61576.2023.10324264"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/csit61576.2023.10324264","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5058165362","display_name":"Arpad Pandy","orcid":"https://orcid.org/0000-0001-8787-7486"},"institutions":[{"id":"https://openalex.org/I132735039","display_name":"University of Debrecen","ror":"https://ror.org/02xf66n48","country_code":"HU","type":"education","lineage":["https://openalex.org/I132735039"]}],"countries":["HU"],"is_corresponding":false,"raw_author_name":"Arpad Pandy","raw_affiliation_strings":["University of Debrecen,Department of Informatics,Debrecen,Hungary"],"affiliations":[{"raw_affiliation_string":"University of Debrecen,Department of Informatics,Debrecen,Hungary","institution_ids":["https://openalex.org/I132735039"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024867067","display_name":"Bal\u00e1zs Harangi","orcid":"https://orcid.org/0000-0003-4405-2040"},"institutions":[{"id":"https://openalex.org/I132735039","display_name":"University of Debrecen","ror":"https://ror.org/02xf66n48","country_code":"HU","type":"education","lineage":["https://openalex.org/I132735039"]}],"countries":["HU"],"is_corresponding":false,"raw_author_name":"Bal\u00e1zs Harangi","raw_affiliation_strings":["University of Debrecen,Department of Informatics,Debrecen,Hungary"],"affiliations":[{"raw_affiliation_string":"University of Debrecen,Department of Informatics,Debrecen,Hungary","institution_ids":["https://openalex.org/I132735039"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5061104387","display_name":"Andr\u00e1s Hajd\u00fa","orcid":"https://orcid.org/0000-0003-1718-9770"},"institutions":[{"id":"https://openalex.org/I132735039","display_name":"University of Debrecen","ror":"https://ror.org/02xf66n48","country_code":"HU","type":"education","lineage":["https://openalex.org/I132735039"]}],"countries":["HU"],"is_corresponding":false,"raw_author_name":"Andr\u00e1s Hajdu","raw_affiliation_strings":["University of Debrecen,Department of Informatics,Debrecen,Hungary"],"affiliations":[{"raw_affiliation_string":"University of Debrecen,Department of Informatics,Debrecen,Hungary","institution_ids":["https://openalex.org/I132735039"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11710","display_name":"Biomedical Text Mining and Ontologies","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/lexical-analysis","display_name":"Lexical analysis","score":0.61841166},{"id":"https://openalex.org/keywords/text-processing","display_name":"Text processing","score":0.4999671},{"id":"https://openalex.org/keywords/rule-based-system","display_name":"Rule-based system","score":0.4551059}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8707163},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.73654276},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.69813675},{"id":"https://openalex.org/C186644900","wikidata":"https://www.wikidata.org/wiki/Q194152","display_name":"Parsing","level":2,"score":0.6265609},{"id":"https://openalex.org/C176982825","wikidata":"https://www.wikidata.org/wiki/Q835922","display_name":"Lexical analysis","level":2,"score":0.61841166},{"id":"https://openalex.org/C195807954","wikidata":"https://www.wikidata.org/wiki/Q1662562","display_name":"Information extraction","level":2,"score":0.5728754},{"id":"https://openalex.org/C2776321320","wikidata":"https://www.wikidata.org/wiki/Q857525","display_name":"Annotation","level":2,"score":0.5329422},{"id":"https://openalex.org/C2779500292","wikidata":"https://www.wikidata.org/wiki/Q14802672","display_name":"Text processing","level":2,"score":0.4999671},{"id":"https://openalex.org/C149271511","wikidata":"https://www.wikidata.org/wiki/Q1417149","display_name":"Rule-based system","level":2,"score":0.4551059},{"id":"https://openalex.org/C26022165","wikidata":"https://www.wikidata.org/wiki/Q8091","display_name":"Grammar","level":2,"score":0.42018387},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.3442701},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33009025},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/csit61576.2023.10324264","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320334111","funder_display_name":"Innovation Fund","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W2396881363","https://openalex.org/W2729101176","https://openalex.org/W2896457183","https://openalex.org/W2944729956","https://openalex.org/W2962739339","https://openalex.org/W2964285624","https://openalex.org/W2979250794","https://openalex.org/W3028184781","https://openalex.org/W3035390927","https://openalex.org/W3129597052","https://openalex.org/W3133087578"],"related_works":["https://openalex.org/W4377970693","https://openalex.org/W4302801307","https://openalex.org/W4245714337","https://openalex.org/W4225939240","https://openalex.org/W4200049245","https://openalex.org/W3185922486","https://openalex.org/W3185916216","https://openalex.org/W3021093086","https://openalex.org/W3011521885","https://openalex.org/W2124141944"],"abstract_inverted_index":{"In":[0],"this":[1,38,166],"paper,":[2],"we":[3,44,96,129,146],"present":[4],"new":[5],"results":[6],"on":[7,136],"drug":[8,26,91,174],"names":[9],"and":[10,24,54,70,80,92,154,175],"dosage":[11,27,176],"extraction":[12,88],"from":[13],"text-format":[14],"medical":[15,179],"reports":[16],"written":[17],"in":[18,29,119,144,178],"a":[19,41,51,98,104,141,162],"low-resource":[20],"language.":[21],"We":[22],"locate":[23,79],"collect":[25],"information":[28],"continuous":[30],"texts":[31],"to":[32,49,78,85,102,114,122,168],"enable":[33],"the":[34,87,90,116,120,152,170,173],"statistical":[35],"processing":[36,159],"of":[37,73,89,151,172],"information.":[39],"As":[40],"first":[42],"step,":[43],"use":[45],"rule-based":[46,63,153],"text-processing":[47],"methods":[48],"gain":[50],"base":[52],"model":[53,60],"generate":[55],"learning":[56,100],"data":[57,121],"for":[58,165],"language":[59,106,158],"creation.":[61],"This":[62,108],"annotation":[64],"part":[65],"component":[66],"includes":[67],"tokenization,":[68],"tagging,":[69],"chunk":[71],"parsing":[72],"tags,":[74],"using":[75],"domain-specific":[76],"grammar":[77],"connect":[81],"related":[82],"tokens.":[83],"Then,":[84],"improve":[86,169],"dosage-related":[93],"text":[94],"elements,":[95],"introduce":[97],"semi-supervised":[99],"process":[101],"train":[103],"BERT-based":[105],"model.":[107],"deep":[109,155],"learning-based":[110,156],"approach":[111,164],"is":[112],"able":[113],"handle":[115],"rigidity":[117],"presented":[118],"be":[123],"processed.":[124],"To":[125],"evaluate":[126],"our":[127,137],"approach,":[128],"consider":[130],"several":[131],"standard":[132],"performance":[133],"metrics.":[134],"Based":[135],"experiments,":[138],"which":[139],"show":[140],"3.5%":[142],"improvement":[143],"extraction,":[145],"conclude":[147],"that":[148],"these":[149],"combinations":[150],"natural":[157],"approaches":[160],"are":[161],"valid":[163],"task":[167],"recognition":[171],"entities":[177],"texts.":[180]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389041528","counts_by_year":[],"updated_date":"2025-01-08T22:43:56.076169","created_date":"2023-11-28"}