{"id":"https://openalex.org/W4381744229","doi":"https://doi.org/10.1109/cscwd57460.2023.10152569","title":"Improving the Quality of Textual Adversarial Examples with Dynamic N-gram Based Attack","display_name":"Improving the Quality of Textual Adversarial Examples with Dynamic N-gram Based Attack","publication_year":2023,"publication_date":"2023-05-24","ids":{"openalex":"https://openalex.org/W4381744229","doi":"https://doi.org/10.1109/cscwd57460.2023.10152569"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cscwd57460.2023.10152569","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5033503143","display_name":"Xiaojiao Xie","orcid":"https://orcid.org/0000-0002-3092-6213"},"institutions":[{"id":"https://openalex.org/I37987034","display_name":"Guangzhou University","ror":"https://ror.org/05ar8rn06","country_code":"CN","type":"education","lineage":["https://openalex.org/I37987034"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaojiao Xie","raw_affiliation_strings":["School of Mathematics and Information Science, Guangzhou University, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Mathematics and Information Science, Guangzhou University, Guangzhou, China","institution_ids":["https://openalex.org/I37987034"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5001574250","display_name":"Pengwei Zhan","orcid":"https://orcid.org/0000-0003-3724-4431"},"institutions":[{"id":"https://openalex.org/I4210165038","display_name":"University of Chinese Academy of Sciences","ror":"https://ror.org/05qbk4x57","country_code":"CN","type":"education","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210165038"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Pengwei Zhan","raw_affiliation_strings":["School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210165038"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"594","last_page":"599"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9767,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9767,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9675,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9667,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/n-gram","display_name":"n-gram","score":0.4232406},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.4151628}],"concepts":[{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.8136422},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.80529356},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5908675},{"id":"https://openalex.org/C2777530160","wikidata":"https://www.wikidata.org/wiki/Q41796","display_name":"Sentence","level":2,"score":0.5535701},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.484891},{"id":"https://openalex.org/C184337299","wikidata":"https://www.wikidata.org/wiki/Q1437428","display_name":"Semantics (computer science)","level":2,"score":0.48336},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.469549},{"id":"https://openalex.org/C2777413886","wikidata":"https://www.wikidata.org/wiki/Q3276013","display_name":"Fluency","level":2,"score":0.45747375},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.45371115},{"id":"https://openalex.org/C117884012","wikidata":"https://www.wikidata.org/wiki/Q94489","display_name":"n-gram","level":3,"score":0.4232406},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.4151628},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.10385525},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cscwd57460.2023.10152569","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.55,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4307474317","https://openalex.org/W2787311093","https://openalex.org/W2624072012","https://openalex.org/W2532616038","https://openalex.org/W2250909759","https://openalex.org/W2147879411","https://openalex.org/W2132221452","https://openalex.org/W2081295016","https://openalex.org/W2057384730","https://openalex.org/W2008468404"],"abstract_inverted_index":{"Natural":[0],"language":[1],"models":[2,26],"have":[3,56],"been":[4,57],"widely":[5],"used":[6],"for":[7],"their":[8,15],"impressive":[9],"performance":[10],"in":[11,72,182,188,191,220],"various":[12,52],"tasks,":[13],"while":[14],"poor":[16],"robustness":[17],"also":[18],"puts":[19],"critical":[20],"applications":[21],"at":[22],"high":[23],"risk.":[24],"These":[25],"are":[27,48,97],"vulnerable":[28],"to":[29,40,50,65,84,130,138,153],"adversarial":[30,67,124,127,144,149,218],"examples,":[31,125],"which":[32,102],"contain":[33],"imperceptible":[34,49,152],"noise":[35],"that":[36,201],"leads":[37],"the":[38,89,104,121,140,148,170,214,223],"model":[39],"wrong":[41],"predictions.":[42],"To":[43],"ensure":[44],"such":[45],"malicious":[46],"examples":[47,68,128,145,219],"humans,":[51],"word-level":[53,62,159],"attack":[54,86,100,160,205,210],"methods":[55,80,113,211],"proposed.":[58],"Previous":[59],"works":[60,96],"on":[61],"attacks":[63],"attempt":[64],"generate":[66],"by":[69,133],"substituting":[70],"words":[71,180,187],"sentences.":[73],"They":[74],"utilize":[75],"different":[76],"candidate":[77],"substitution":[78,82],"selection":[79],"and":[81,88,119,146,185,212,231],"strategies":[83],"improve":[85,139],"effectiveness":[87],"quality":[90,141,215],"of":[91,111,123,142,194,216,222,225],"generated":[92,217],"examples.":[93],"However,":[94],"previous":[95,183,209],"all":[98],"unigram-based":[99],"methods,":[101],"ignore":[103],"connection":[105],"between":[106],"words.":[107],"The":[108],"unigram":[109],"nature":[110],"these":[112],"downgrades":[114],"fluency,":[115],"increases":[116],"grammatical":[117,229],"errors,":[118],"biases":[120],"semantics":[122],"making":[126],"easier":[129],"be":[131],"detected":[132],"humans.":[134],"In":[135],"this":[136],"paper,":[137],"textual":[143],"makes":[147],"example":[150],"more":[151],"human,":[154],"we":[155],"propose":[156],"a":[157,189],"black-box":[158],"method":[161],"called":[162],"Dynamic":[163],"N-Gram":[164],"Based":[165],"Attack":[166],"(DyGram).":[167],"DyGram":[168,202],"tokenizes":[169],"entire":[171],"sentence":[172,190],"into":[173],"multiple":[174],"n-gram":[175,195],"units,":[176],"rather":[177],"than":[178,208],"individual":[179],"as":[181],"works,":[184],"substitutes":[186],"descending":[192],"order":[193],"unit":[196],"importance.":[197],"Extensive":[198],"experiments":[199],"demonstrate":[200],"achieves":[203],"higher":[204],"success":[206],"rates":[207],"improves":[213],"terms":[221],"number":[224],"perturbed":[226],"words,":[227],"perplexity,":[228],"correctness,":[230],"semantic":[232],"similarity.":[233]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4381744229","counts_by_year":[],"updated_date":"2025-01-04T02:42:09.984206","created_date":"2023-06-24"}