{"id":"https://openalex.org/W2963870240","doi":"https://doi.org/10.1109/cscs.2019.00074","title":"Advanced Customer Activity Prediction Based on Deep Hierarchic Encoder-Decoders","display_name":"Advanced Customer Activity Prediction Based on Deep Hierarchic Encoder-Decoders","publication_year":2019,"publication_date":"2019-05-01","ids":{"openalex":"https://openalex.org/W2963870240","doi":"https://doi.org/10.1109/cscs.2019.00074","mag":"2963870240"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cscs.2019.00074","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/1904.07687","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5026528676","display_name":"Andrei Ionut Damian","orcid":null},"institutions":[],"countries":["RO"],"is_corresponding":false,"raw_author_name":"Andrei Damian","raw_affiliation_strings":["Lummetry.Al, Bucharest, Romania"],"affiliations":[{"raw_affiliation_string":"Lummetry.Al, Bucharest, Romania","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076804664","display_name":"Laurentiu Piciu","orcid":null},"institutions":[{"id":"https://openalex.org/I61641377","display_name":"Universitatea Na\u021bional\u0103 de \u0218tiin\u021b\u0103 \u0219i Tehnologie Politehnica Bucure\u0219ti","ror":"https://ror.org/0558j5q12","country_code":"RO","type":"funder","lineage":["https://openalex.org/I61641377"]}],"countries":["RO"],"is_corresponding":false,"raw_author_name":"Laurentiu Piciu","raw_affiliation_strings":["University Politehnica of Bucharest, Bucharest, Romania"],"affiliations":[{"raw_affiliation_string":"University Politehnica of Bucharest, Bucharest, Romania","institution_ids":["https://openalex.org/I61641377"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031095694","display_name":"Sergiu Turlea","orcid":null},"institutions":[],"countries":["RO"],"is_corresponding":false,"raw_author_name":"Sergiu Turlea","raw_affiliation_strings":["Lummetry.Al, Bucharest, Romania"],"affiliations":[{"raw_affiliation_string":"Lummetry.Al, Bucharest, Romania","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5013822778","display_name":"Nicolae \u0162\u0103pu\u015f","orcid":"https://orcid.org/0000-0002-7878-6598"},"institutions":[],"countries":["RO"],"is_corresponding":false,"raw_author_name":"Nicolae Tapus","raw_affiliation_strings":["Lummetry.Al, Bucharest, Romania"],"affiliations":[{"raw_affiliation_string":"Lummetry.Al, Bucharest, Romania","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.132,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":4,"citation_normalized_percentile":{"value":0.630674,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"403","last_page":"409"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9942,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.83678436},{"id":"https://openalex.org/C557471498","wikidata":"https://www.wikidata.org/wiki/Q554950","display_name":"Recommender system","level":2,"score":0.78548074},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5617422},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.54058},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5219921},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.37059593}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cscs.2019.00074","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1904.07687","pdf_url":"http://arxiv.org/pdf/1904.07687","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1904.07687","pdf_url":"http://arxiv.org/pdf/1904.07687","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","score":0.6,"id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1498436455","https://openalex.org/W1924770834","https://openalex.org/W2026983544","https://openalex.org/W2064675550","https://openalex.org/W2130942839","https://openalex.org/W2271840356","https://openalex.org/W2469952266","https://openalex.org/W2726499916","https://openalex.org/W2788997749","https://openalex.org/W2798984840","https://openalex.org/W2804785557","https://openalex.org/W2897793961","https://openalex.org/W2898744257","https://openalex.org/W2898756283","https://openalex.org/W2918921689","https://openalex.org/W2964296635","https://openalex.org/W4248672808","https://openalex.org/W4294170691","https://openalex.org/W4299286960","https://openalex.org/W4301213493","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4360585206","https://openalex.org/W4321369474","https://openalex.org/W4306674287","https://openalex.org/W4285208911","https://openalex.org/W3215138031","https://openalex.org/W3082895349","https://openalex.org/W3046775127","https://openalex.org/W3009238340","https://openalex.org/W2961085424","https://openalex.org/W2731899572"],"abstract_inverted_index":{"Product":[0],"recommender":[1,36,88,118,215],"systems":[2,37,89,119,216],"and":[3,20,33,57,62,91,145,161,196,229],"customer":[4,78,142,230],"profiling":[5],"techniques":[6],"have":[7],"always":[8],"been":[9],"a":[10,194],"priority":[11],"in":[12,46,114,207,235],"online":[13],"retail.":[14],"Recent":[15],"machine":[16],"learning":[17,103,134],"research":[18,90],"advances":[19],"also":[21,75,221],"wide":[22],"availability":[23],"of":[24,35,82,87,95,111,141,155,167,185,200,212],"massive":[25],"parallel":[26],"numerical":[27],"computing":[28],"has":[29,158],"enabled":[30],"various":[31],"approaches":[32,122],"directions":[34],"advancement.":[38],"Worth":[39],"to":[40,67,76,104,138,147,173,209],"mention":[41],"is":[42,93],"the":[43,83,112,130,169],"fact":[44],"that":[45,94],"past":[47],"years":[48],"multiple":[49,121,159],"traditional":[50],"\"offline\"":[51],"retail":[52],"business":[53],"are":[54],"gearing":[55],"more":[56,58],"towards":[59],"employing":[60],"inferential":[61],"even":[63],"predictive":[64,72],"analytics":[65],"both":[66],"stock-related":[68],"problems":[69],"such":[70,128,164,224],"as":[71,129,165,225],"replenishment":[73],"but":[74],"enrich":[77],"interaction":[79],"experience.":[80],"One":[81],"most":[84],"important":[85],"areas":[86],"development":[92],"Deep":[96,115],"Learning":[97,116],"based":[98,117,132,150],"models":[99,149],"which":[100],"employ":[101],"representational":[102],"model":[105],"consumer":[106],"behavioral":[107,231],"patterns.":[108],"Current":[109],"state":[110],"art":[113],"uses":[120],"ranging":[123],"from":[124],"already":[125],"classical":[126],"methods":[127,157],"ones":[131],"on":[133,151],"product":[135,177,181,226],"representation":[136],"vector,":[137],"recurrent":[139],"analysis":[140],"transactional":[143],"time-series":[144],"up":[146],"generative":[148],"adversarial":[152],"training.":[153],"Each":[154],"these":[156],"advantages":[160],"inherent":[162],"weaknesses":[163],"inability":[166],"understanding":[168],"actual":[170,186],"user-journey,":[171],"ability":[172],"propose":[174],"only":[175],"single":[176],"recommendation":[178],"or":[179],"top-k":[180],"recommendations":[182],"without":[183],"prediction":[184],"next-best-offer.":[187],"In":[188],"our":[189],"work":[190],"we":[191],"will":[192,220],"present":[193],"new":[195],"innovative":[197],"architectural":[198],"approach":[199,219],"applying":[201],"state-of-the-art":[202,214],"hierarchical":[203],"multi-module":[204],"encoder-decoder":[205],"architecture":[206],"order":[208],"solve":[210],"several":[211],"current":[213],"issues.":[217],"Our":[218],"produce":[222],"by-products":[223],"need-based":[227],"segmentation":[228,232],"-":[233],"all":[234],"an":[236],"end-to-end":[237],"trainable":[238],"approach.":[239]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963870240","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":1}],"updated_date":"2025-03-29T10:25:27.922936","created_date":"2019-07-30"}