{"id":"https://openalex.org/W4285325218","doi":"https://doi.org/10.1109/csci54926.2021.00046","title":"A New Unified Computational Method for Finding Confidence Intervals of Shortest Length and/or Equal Tails under Parametric Uncertainty","display_name":"A New Unified Computational Method for Finding Confidence Intervals of Shortest Length and/or Equal Tails under Parametric Uncertainty","publication_year":2021,"publication_date":"2021-12-01","ids":{"openalex":"https://openalex.org/W4285325218","doi":"https://doi.org/10.1109/csci54926.2021.00046"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/csci54926.2021.00046","pdf_url":null,"source":{"id":"https://openalex.org/S4363607974","display_name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5075186748","display_name":"Nicholas A. Nechval","orcid":null},"institutions":[{"id":"https://openalex.org/I91123046","display_name":"University of Latvia","ror":"https://ror.org/05g3mes96","country_code":"LV","type":"education","lineage":["https://openalex.org/I91123046"]}],"countries":["LV"],"is_corresponding":false,"raw_author_name":"Nicholas A. Nechval","raw_affiliation_strings":["BVEF Research Institute, University of Latvia, Riga, Latvia"],"affiliations":[{"raw_affiliation_string":"BVEF Research Institute, University of Latvia, Riga, Latvia","institution_ids":["https://openalex.org/I91123046"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5051223714","display_name":"Gundars B\u0113rzi\u0146\u0161","orcid":"https://orcid.org/0000-0001-5058-4268"},"institutions":[{"id":"https://openalex.org/I91123046","display_name":"University of Latvia","ror":"https://ror.org/05g3mes96","country_code":"LV","type":"education","lineage":["https://openalex.org/I91123046"]}],"countries":["LV"],"is_corresponding":false,"raw_author_name":"Gundars Berzins","raw_affiliation_strings":["BVEF Research Institute, University of Latvia, Riga, Latvia"],"affiliations":[{"raw_affiliation_string":"BVEF Research Institute, University of Latvia, Riga, Latvia","institution_ids":["https://openalex.org/I91123046"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5064436833","display_name":"Konstantin N. Nechval","orcid":"https://orcid.org/0009-0003-1876-5933"},"institutions":[{"id":"https://openalex.org/I24568809","display_name":"Transport and Telecommunication Institute","ror":"https://ror.org/01628w679","country_code":"LV","type":"education","lineage":["https://openalex.org/I24568809"]}],"countries":["LV"],"is_corresponding":false,"raw_author_name":"Konstantin N. Nechval","raw_affiliation_strings":["Transport and Telecommun. Institute,Aviation Department,Riga,Latvia"],"affiliations":[{"raw_affiliation_string":"Transport and Telecommun. Institute,Aviation Department,Riga,Latvia","institution_ids":["https://openalex.org/I24568809"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.955,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.933131,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":78,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"533","last_page":"539"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10928","display_name":"Probabilistic and Robust Engineering Design","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1804","display_name":"Statistics, Probability and Uncertainty"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T10928","display_name":"Probabilistic and Robust Engineering Design","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1804","display_name":"Statistics, Probability and Uncertainty"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11443","display_name":"Advanced Statistical Process Monitoring","score":0.991,"subfield":{"id":"https://openalex.org/subfields/1804","display_name":"Statistics, Probability and Uncertainty"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11890","display_name":"Scientific Measurement and Uncertainty Evaluation","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/1804","display_name":"Statistics, Probability and Uncertainty"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/confidence-distribution","display_name":"Confidence distribution","score":0.6556978},{"id":"https://openalex.org/keywords/credible-interval","display_name":"Credible interval","score":0.4946024},{"id":"https://openalex.org/keywords/prediction-interval","display_name":"Prediction interval","score":0.46379098},{"id":"https://openalex.org/keywords/robust-confidence-intervals","display_name":"Robust confidence intervals","score":0.44964254}],"concepts":[{"id":"https://openalex.org/C44249647","wikidata":"https://www.wikidata.org/wiki/Q208498","display_name":"Confidence interval","level":2,"score":0.7309986},{"id":"https://openalex.org/C13662513","wikidata":"https://www.wikidata.org/wiki/Q5160087","display_name":"Confidence distribution","level":3,"score":0.6556978},{"id":"https://openalex.org/C42468098","wikidata":"https://www.wikidata.org/wiki/Q5009921","display_name":"CDF-based nonparametric confidence interval","level":3,"score":0.6273822},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.5968683},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.5682974},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.56058484},{"id":"https://openalex.org/C121117317","wikidata":"https://www.wikidata.org/wiki/Q4439221","display_name":"Credible interval","level":3,"score":0.4946024},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.4793804},{"id":"https://openalex.org/C103402496","wikidata":"https://www.wikidata.org/wiki/Q1106171","display_name":"Prediction interval","level":2,"score":0.46379098},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.4541776},{"id":"https://openalex.org/C66520545","wikidata":"https://www.wikidata.org/wiki/Q7353538","display_name":"Robust confidence intervals","level":3,"score":0.44964254},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.42933357},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3532831},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.08761978},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/csci54926.2021.00046","pdf_url":null,"source":{"id":"https://openalex.org/S4363607974","display_name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/3","score":0.75,"display_name":"Good health and well-being"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W1983542002","https://openalex.org/W2024075858","https://openalex.org/W2257075527","https://openalex.org/W2768735944","https://openalex.org/W2883929610","https://openalex.org/W2911804094","https://openalex.org/W2953724304","https://openalex.org/W2963018549","https://openalex.org/W3043196879","https://openalex.org/W3088953504","https://openalex.org/W3131868379","https://openalex.org/W55676608"],"related_works":["https://openalex.org/W913292429","https://openalex.org/W4225113063","https://openalex.org/W4221078923","https://openalex.org/W2183054518","https://openalex.org/W2162631808","https://openalex.org/W2123327042","https://openalex.org/W2111482368","https://openalex.org/W1977814997","https://openalex.org/W1974943484","https://openalex.org/W1546578740"],"abstract_inverted_index":{"In":[0,160],"statistics,":[1],"confidence":[2,71,108,158,171],"intervals":[3,27,72,109,172,189],"are":[4,73,110,239],"used":[5,75,112],"to":[6,15,30,43,56,81,113],"represent":[7],"a":[8,17,21,91,157,164,224],"range":[9],"of":[10,24,97,141,173,217,220,229],"values":[11],"that":[12],"is":[13,60,144,154,182,215],"likely":[14],"contain":[16],"population":[18,45],"parameter":[19,152],"with":[20],"certain":[22],"level":[23],"confidence.":[25],"Confidence":[26],"allow":[28],"us":[29],"generalize":[31],"our":[32,39,48],"findings":[33,59],"from":[34,37,46],"the":[35,44,65,95,102,115,150,161,209,212,218,227,234],"samples":[36],"which":[38,47,193],"data":[40],"were":[41],"taken":[42],"sample":[49],"was":[50],"drawn.":[51],"For":[52],"example,":[53],"this":[54],"ability":[55],"summarize":[57],"one's":[58],"often":[61,74,111],"very":[62],"helpful":[63],"in":[64,78,94,118,156,190,226],"following":[66],"areas:":[67],"1)":[68],"Manufacturing,":[69],"where":[70,107,135],"by":[76,101,126],"engineers":[77],"manufacturing":[79],"plants":[80],"determine":[82,114],"if":[83],"some":[84,127],"new":[85,128,165],"process,":[86],"technique,":[87],"method,":[88],"etc.":[89,124],"causes":[90],"meaningful":[92],"change":[93,117],"number":[96],"defective":[98],"products":[99],"produced":[100,125],"plant,":[103],"2)":[104],"Clinical":[105],"trials,":[106],"mean":[116],"blood":[119],"pressure,":[120],"heart":[121],"rate,":[122],"cholesterol,":[123],"drug":[129],"or":[130],"treatment,":[131],"3)":[132],"Hypothesis":[133],"testing,":[134],"(in":[136],"general)":[137],"for":[138,169,205],"every":[139],"test":[140],"hypothesis":[142],"there":[143],"an":[145],"equivalent":[146],"statement":[147],"about":[148],"whether":[149],"hypothesized":[151],"value":[153],"included":[155],"interval.":[159],"present":[162],"paper,":[163],"unified":[166,185],"computational":[167,186],"method":[168],"finding":[170],"shortest":[174],"length":[175],"and/or":[176],"equal":[177],"tails":[178],"under":[179],"parametric":[180],"uncertainty":[181],"proposed.":[183],"The":[184],"technique":[187],"yields":[188],"several":[191],"situations":[192],"have":[194],"previously":[195],"required":[196],"separate":[197],"analyses":[198],"using":[199],"more":[200],"advanced":[201],"techniques":[202],"and":[203,222],"tables":[204],"numerical":[206,237],"solutions.":[207],"Unlike":[208],"Bayesian":[210],"approach,":[211,236],"proposed":[213,235],"approach":[214],"independent":[216],"choice":[219],"priors":[221],"represents":[223],"novelty":[225],"theory":[228],"statistical":[230],"decisions.":[231],"To":[232],"illustrate":[233],"examples":[238],"given.":[240]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4285325218","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1}],"updated_date":"2025-01-02T11:44:16.393795","created_date":"2022-07-14"}