{"id":"https://openalex.org/W2564354023","doi":"https://doi.org/10.1109/crv.2016.66","title":"Performance Evaluation of Bottom-Up Saliency Models for Object Proposal Generation","display_name":"Performance Evaluation of Bottom-Up Saliency Models for Object Proposal Generation","publication_year":2016,"publication_date":"2016-06-01","ids":{"openalex":"https://openalex.org/W2564354023","doi":"https://doi.org/10.1109/crv.2016.66","mag":"2564354023"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/crv.2016.66","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5026067487","display_name":"Anton Knaub","orcid":null},"institutions":[{"id":"https://openalex.org/I107257983","display_name":"Darmstadt University of Applied Sciences","ror":"https://ror.org/047wbd030","country_code":"DE","type":"education","lineage":["https://openalex.org/I107257983"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Anton Knaub","raw_affiliation_strings":["Darmstadt University of Applied Sciences, Darmstadt, Germany"],"affiliations":[{"raw_affiliation_string":"Darmstadt University of Applied Sciences, Darmstadt, Germany","institution_ids":["https://openalex.org/I107257983"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083176636","display_name":"Vikram Narayan","orcid":null},"institutions":[{"id":"https://openalex.org/I4210086863","display_name":"Panasonic (Germany)","ror":"https://ror.org/000en4h24","country_code":"DE","type":"company","lineage":["https://openalex.org/I1283155146","https://openalex.org/I4210086863"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Vikram Narayan","raw_affiliation_strings":["Panasonic Automotive and Industrial Systems Europe, Langen, Germany"],"affiliations":[{"raw_affiliation_string":"Panasonic Automotive and Industrial Systems Europe, Langen, Germany","institution_ids":["https://openalex.org/I4210086863"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5025132068","display_name":"Markus Adameck","orcid":null},"institutions":[{"id":"https://openalex.org/I4210086863","display_name":"Panasonic (Germany)","ror":"https://ror.org/000en4h24","country_code":"DE","type":"company","lineage":["https://openalex.org/I1283155146","https://openalex.org/I4210086863"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Markus Adameck","raw_affiliation_strings":["Panasonic Automotive and Industrial Systems Europe, Langen, Germany"],"affiliations":[{"raw_affiliation_string":"Panasonic Automotive and Industrial Systems Europe, Langen, Germany","institution_ids":["https://openalex.org/I4210086863"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":"266","last_page":"272"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sliding-window-protocol","display_name":"Sliding window protocol","score":0.4944818},{"id":"https://openalex.org/keywords/object-based","display_name":"Object based","score":0.44841424}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.81276023},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.69990385},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.6743287},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.6740482},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.66316444},{"id":"https://openalex.org/C64876066","wikidata":"https://www.wikidata.org/wiki/Q5141226","display_name":"Cognitive neuroscience of visual object recognition","level":3,"score":0.52359354},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.5194654},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.5112562},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.50515825},{"id":"https://openalex.org/C102392041","wikidata":"https://www.wikidata.org/wiki/Q592860","display_name":"Sliding window protocol","level":3,"score":0.4944818},{"id":"https://openalex.org/C3019973339","wikidata":"https://www.wikidata.org/wiki/Q899523","display_name":"Object based","level":3,"score":0.44841424},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4173603},{"id":"https://openalex.org/C2778751112","wikidata":"https://www.wikidata.org/wiki/Q835016","display_name":"Window (computing)","level":2,"score":0.41624224},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.40317968},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/crv.2016.66","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":38,"referenced_works":["https://openalex.org/W1490100156","https://openalex.org/W1510835000","https://openalex.org/W1566135517","https://openalex.org/W1968405646","https://openalex.org/W1976931317","https://openalex.org/W1996326832","https://openalex.org/W2006902234","https://openalex.org/W2008066834","https://openalex.org/W2010181071","https://openalex.org/W2032007016","https://openalex.org/W2037227137","https://openalex.org/W2037328649","https://openalex.org/W2041719651","https://openalex.org/W2043331342","https://openalex.org/W2052245719","https://openalex.org/W2066624635","https://openalex.org/W2068730032","https://openalex.org/W2074005006","https://openalex.org/W2082855665","https://openalex.org/W2082917491","https://openalex.org/W2088049833","https://openalex.org/W2090463878","https://openalex.org/W2100470808","https://openalex.org/W2102605133","https://openalex.org/W2116724443","https://openalex.org/W2120419212","https://openalex.org/W2121927366","https://openalex.org/W2128272608","https://openalex.org/W2135957164","https://openalex.org/W2137401668","https://openalex.org/W2139047169","https://openalex.org/W2146103513","https://openalex.org/W2157487943","https://openalex.org/W2161969291","https://openalex.org/W2165190596","https://openalex.org/W2949150497","https://openalex.org/W4299733416","https://openalex.org/W7746136"],"related_works":["https://openalex.org/W4387272257","https://openalex.org/W4230691760","https://openalex.org/W3014558862","https://openalex.org/W2790624640","https://openalex.org/W2390901981","https://openalex.org/W2381286523","https://openalex.org/W2353818951","https://openalex.org/W2297673025","https://openalex.org/W2109115373","https://openalex.org/W1605879311"],"abstract_inverted_index":{"In":[0],"this":[1],"work,":[2],"we":[3,66],"present":[4],"the":[5,14,33,40,81,87,90,95,113],"performance":[6],"evaluation":[7],"of":[8,16,22,27,32,46,80,89,92,115],"twelve":[9],"existing":[10,64],"saliency":[11,78,96,117],"models":[12,118],"for":[13,122],"purpose":[15],"object":[17,23,35,50,108,123],"proposal":[18,24,51,124],"generation.":[19,125],"The":[20,77],"topic":[21],"generation":[25,52],"is":[26,84,98],"high":[28],"importance":[29],"as":[30,100,119],"most":[31],"successful":[34],"detection":[36,61,109],"techniques":[37],"still":[38],"employ":[39,69],"sliding":[41,47],"window":[42],"approach.":[43],"Intelligent":[44],"pre-selection":[45],"windows":[48],"using":[49],"methods":[53],"have":[54,111],"shown":[55],"to":[56],"boost":[57],"both":[58],"runtime":[59],"and":[60,86],"performance.":[62],"Unlike":[63],"approaches,":[65],"do":[67],"not":[68],"any":[70],"machine":[71],"learning":[72],"classifier":[73],"or":[74],"require":[75],"training.":[76],"map":[79,97],"corresponding":[82],"image":[83],"computed":[85],"variance":[88],"region":[91],"interest":[93],"on":[94,105],"considered":[99],"its":[101],"score":[102],"correspondingly.":[103],"Experiments":[104],"two":[106],"contemporary":[107],"datasets":[110],"revealed":[112],"effectiveness":[114],"bottom-up":[116],"a":[120],"tool":[121]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2564354023","counts_by_year":[],"updated_date":"2024-12-07T22:52:19.849409","created_date":"2017-01-06"}