{"id":"https://openalex.org/W4200231869","doi":"https://doi.org/10.1109/commnet52204.2021.9641904","title":"Impulsive Noise Parameter Estimation: A Deep CNN-LSTM Network Approach","display_name":"Impulsive Noise Parameter Estimation: A Deep CNN-LSTM Network Approach","publication_year":2021,"publication_date":"2021-12-03","ids":{"openalex":"https://openalex.org/W4200231869","doi":"https://doi.org/10.1109/commnet52204.2021.9641904"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/commnet52204.2021.9641904","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5048561681","display_name":"Alka Isac","orcid":null},"institutions":[{"id":"https://openalex.org/I4210094041","display_name":"Ericsson (Canada)","ror":"https://ror.org/00nas2c56","country_code":"CA","type":"company","lineage":["https://openalex.org/I1306339040","https://openalex.org/I4210094041"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Alka Isac","raw_affiliation_strings":["Ericsson, Montreal, Canada"],"affiliations":[{"raw_affiliation_string":"Ericsson, Montreal, Canada","institution_ids":["https://openalex.org/I4210094041"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075229860","display_name":"Bassant Selim","orcid":"https://orcid.org/0000-0003-4569-6817"},"institutions":[{"id":"https://openalex.org/I4210094041","display_name":"Ericsson (Canada)","ror":"https://ror.org/00nas2c56","country_code":"CA","type":"company","lineage":["https://openalex.org/I1306339040","https://openalex.org/I4210094041"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Bassant Selim","raw_affiliation_strings":["Ericsson, Montreal, Canada"],"affiliations":[{"raw_affiliation_string":"Ericsson, Montreal, Canada","institution_ids":["https://openalex.org/I4210094041"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000972878","display_name":"Zeinab Sobhanigavgani","orcid":null},"institutions":[{"id":"https://openalex.org/I4210094041","display_name":"Ericsson (Canada)","ror":"https://ror.org/00nas2c56","country_code":"CA","type":"company","lineage":["https://openalex.org/I1306339040","https://openalex.org/I4210094041"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Zeinab Sobhanigavgani","raw_affiliation_strings":["Ericsson, Montreal, Canada"],"affiliations":[{"raw_affiliation_string":"Ericsson, Montreal, Canada","institution_ids":["https://openalex.org/I4210094041"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032243366","display_name":"Georges Kaddoum","orcid":"https://orcid.org/0000-0002-5025-6624"},"institutions":[{"id":"https://openalex.org/I9736820","display_name":"\u00c9cole de Technologie Sup\u00e9rieure","ror":"https://ror.org/0020snb74","country_code":"CA","type":"education","lineage":["https://openalex.org/I49663120","https://openalex.org/I9736820"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Georges Kaddoum","raw_affiliation_strings":["\u00c9cole de Technologie Sup\u00e9rieure, Montreal, Canada"],"affiliations":[{"raw_affiliation_string":"\u00c9cole de Technologie Sup\u00e9rieure, Montreal, Canada","institution_ids":["https://openalex.org/I9736820"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5110110991","display_name":"Mallik Tatipamula","orcid":null},"institutions":[{"id":"https://openalex.org/I4210139236","display_name":"Ericsson (United States)","ror":"https://ror.org/03q3bdj78","country_code":"US","type":"company","lineage":["https://openalex.org/I1306339040","https://openalex.org/I4210139236"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mallik Tatipamula","raw_affiliation_strings":["Ericsson, Santa-Clara, USA"],"affiliations":[{"raw_affiliation_string":"Ericsson, Santa-Clara, USA","institution_ids":["https://openalex.org/I4210139236"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.164,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.501483,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":72},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12146","display_name":"Power Line Communications and Noise","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12146","display_name":"Power Line Communications and Noise","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10936","display_name":"Millimeter-Wave Propagation and Modeling","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11444","display_name":"Electromagnetic Compatibility and Noise Suppression","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/gaussian-noise","display_name":"Gaussian Noise","score":0.6751769},{"id":"https://openalex.org/keywords/impulse-noise","display_name":"Impulse noise","score":0.55538344}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8228756},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.71473366},{"id":"https://openalex.org/C4199805","wikidata":"https://www.wikidata.org/wiki/Q2725903","display_name":"Gaussian noise","level":2,"score":0.6751769},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.64518344},{"id":"https://openalex.org/C127372701","wikidata":"https://www.wikidata.org/wiki/Q16979398","display_name":"Impulse noise","level":3,"score":0.55538344},{"id":"https://openalex.org/C56985126","wikidata":"https://www.wikidata.org/wiki/Q854039","display_name":"Rayleigh fading","level":4,"score":0.48824266},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.483079},{"id":"https://openalex.org/C29265498","wikidata":"https://www.wikidata.org/wiki/Q7047719","display_name":"Noise measurement","level":3,"score":0.48143527},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.46543968},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.4471097},{"id":"https://openalex.org/C555944384","wikidata":"https://www.wikidata.org/wiki/Q249","display_name":"Wireless","level":2,"score":0.4354504},{"id":"https://openalex.org/C23224414","wikidata":"https://www.wikidata.org/wiki/Q176769","display_name":"Hidden Markov model","level":2,"score":0.42971238},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4259116},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.42324317},{"id":"https://openalex.org/C13944312","wikidata":"https://www.wikidata.org/wiki/Q7512748","display_name":"Signal-to-noise ratio (imaging)","level":2,"score":0.42177647},{"id":"https://openalex.org/C81978471","wikidata":"https://www.wikidata.org/wiki/Q1196572","display_name":"Fading","level":3,"score":0.35629135},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.25434017},{"id":"https://openalex.org/C163294075","wikidata":"https://www.wikidata.org/wiki/Q581861","display_name":"Noise reduction","level":2,"score":0.19782329},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/commnet52204.2021.9641904","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.44,"id":"https://metadata.un.org/sdg/13","display_name":"Climate action"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1836465849","https://openalex.org/W1924770834","https://openalex.org/W1995970779","https://openalex.org/W2064675550","https://openalex.org/W2095705004","https://openalex.org/W2131410183","https://openalex.org/W2134711918","https://openalex.org/W2141412829","https://openalex.org/W2145522405","https://openalex.org/W2152628826","https://openalex.org/W2157903917","https://openalex.org/W2165155912","https://openalex.org/W2288074780","https://openalex.org/W2535990876","https://openalex.org/W2811506665","https://openalex.org/W2963855167","https://openalex.org/W3011740449","https://openalex.org/W3045844686","https://openalex.org/W3105369090","https://openalex.org/W3108839769","https://openalex.org/W3208133533"],"related_works":["https://openalex.org/W3143566216","https://openalex.org/W2985488186","https://openalex.org/W2571655022","https://openalex.org/W2463830379","https://openalex.org/W2290527899","https://openalex.org/W2286538174","https://openalex.org/W2165264176","https://openalex.org/W2159720070","https://openalex.org/W2157134024","https://openalex.org/W1991133639"],"abstract_inverted_index":{"Impulsive":[0],"noise":[1,77,130,144],"is":[2,47,84,105,121],"a":[3,64,133],"widespread":[4],"phenomenon":[5],"that":[6,114],"can":[7,33],"hinder":[8],"the":[9,17,25,28,42,54,69,72,81,115,128],"performance":[10],"of":[11,27,71,75,137],"wireless":[12,18],"communication":[13],"systems,":[14],"especially":[15],"given":[16],"medium's":[19],"dynamic":[20,149],"channel":[21],"characteristics.":[22],"To":[23,58],"alleviate":[24],"effects":[26],"noise,":[29],"several":[30],"mitigation":[31,55,147],"techniques":[32],"be":[34],"resorted":[35],"to.":[36],"In":[37],"this":[38,59,61,109],"context,":[39],"information":[40],"on":[41],"impulsive":[43,76,92,129,143],"noise's":[44],"statistical":[45,73],"parameters":[46,74,131],"generally":[48],"required":[49],"in":[50,148],"order":[51],"to":[52,107,123],"optimize":[53],"technique":[56],"performance.":[57],"end,":[60],"study":[62],"proposes":[63],"deep":[65,95],"learning":[66],"approach":[67],"for":[68,142],"estimation":[70],"with":[78],"memory":[79],"where":[80],"received":[82],"signal":[83],"impaired":[85],"by":[86],"Rayleigh":[87],"fading":[88],"and":[89,120,126,146],"two-state":[90],"Markov-Gaussian":[91],"noise.":[93],"A":[94],"Convolutional":[96],"Neural":[97],"Network":[98],"-":[99],"Long-Short":[100],"Term":[101],"Memory":[102],"(CNN-LSTM)":[103],"model":[104,116],"designed":[106],"extract":[108],"information.":[110],"Provided":[111],"results":[112],"demonstrate":[113],"outperforms":[117],"baseline":[118],"approaches":[119],"able":[122],"efficiently":[124],"learn":[125],"infer":[127],"from":[132],"relatively":[134],"small":[135],"number":[136],"symbols,":[138],"making":[139],"it":[140],"suitable":[141],"detection":[145],"environments.":[150]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4200231869","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-24T05:23:42.745439","created_date":"2021-12-31"}