{"id":"https://openalex.org/W4387914440","doi":"https://doi.org/10.1109/codit58514.2023.10284159","title":"Sales' Forecasting Based on Big Data and Machine Learning Analysis","display_name":"Sales' Forecasting Based on Big Data and Machine Learning Analysis","publication_year":2023,"publication_date":"2023-07-03","ids":{"openalex":"https://openalex.org/W4387914440","doi":"https://doi.org/10.1109/codit58514.2023.10284159"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/codit58514.2023.10284159","pdf_url":null,"source":{"id":"https://openalex.org/S4363607900","display_name":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5003869969","display_name":"Fatma Abubaker","orcid":"https://orcid.org/0000-0003-3705-3651"},"institutions":[{"id":"https://openalex.org/I158749337","display_name":"Princess Sumaya University for Technology","ror":"https://ror.org/01jy46q10","country_code":"JO","type":"education","lineage":["https://openalex.org/I158749337"]}],"countries":["JO"],"is_corresponding":false,"raw_author_name":"Fatma Abubaker","raw_affiliation_strings":["Department of Electrical Engineering, Princess Sumaya University for Technology, Jordan"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering, Princess Sumaya University for Technology, Jordan","institution_ids":["https://openalex.org/I158749337"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5093120755","display_name":"Ala'Khalifeh","orcid":null},"institutions":[{"id":"https://openalex.org/I230091363","display_name":"German Jordanian University","ror":"https://ror.org/02jgpyd84","country_code":"JO","type":"education","lineage":["https://openalex.org/I230091363"]}],"countries":["JO"],"is_corresponding":false,"raw_author_name":"None Ala'Khalifeh","raw_affiliation_strings":["Department of Electrical Engineering, German Jordanian University, Jordan"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering, German Jordanian University, Jordan","institution_ids":["https://openalex.org/I230091363"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":68},"biblio":{"volume":null,"issue":null,"first_page":"804","last_page":"808"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.992,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9753,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/economic-forecasting","display_name":"Economic forecasting","score":0.430232}],"concepts":[{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.69142187},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.601105},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5721409},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5555205},{"id":"https://openalex.org/C90673727","wikidata":"https://www.wikidata.org/wiki/Q901718","display_name":"Product (mathematics)","level":2,"score":0.5399414},{"id":"https://openalex.org/C206345919","wikidata":"https://www.wikidata.org/wiki/Q20380951","display_name":"Resource (disambiguation)","level":2,"score":0.48738652},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.48096433},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.43270236},{"id":"https://openalex.org/C163068380","wikidata":"https://www.wikidata.org/wiki/Q3409313","display_name":"Economic forecasting","level":2,"score":0.430232},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41961217},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.40183014},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.27769214},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.24656504},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.16610542},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.15048155},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.12575302},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/codit58514.2023.10284159","pdf_url":null,"source":{"id":"https://openalex.org/S4363607900","display_name":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.59,"id":"https://metadata.un.org/sdg/8","display_name":"Decent work and economic growth"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W2796226124","https://openalex.org/W3044719873","https://openalex.org/W3099893182","https://openalex.org/W3111093125","https://openalex.org/W3139209849","https://openalex.org/W3162044769","https://openalex.org/W3162257929","https://openalex.org/W3214355400","https://openalex.org/W418382049","https://openalex.org/W4206062825","https://openalex.org/W4210414096","https://openalex.org/W4246059105"],"related_works":["https://openalex.org/W4394895745","https://openalex.org/W4390608645","https://openalex.org/W4298287631","https://openalex.org/W4247566972","https://openalex.org/W4206777497","https://openalex.org/W3090563135","https://openalex.org/W3008584592","https://openalex.org/W2964006806","https://openalex.org/W2960264696","https://openalex.org/W2497432351"],"abstract_inverted_index":{"Modern":[0],"economic":[1],"institutions":[2],"rely":[3],"heavily":[4],"on":[5],"sales'":[6],"forecasting":[7],"(SF)":[8],"to":[9,60,75,148],"have":[10,135,163],"more":[11],"efficient":[12],"resource":[13],"utilization.":[14],"It":[15],"is":[16,85],"widely":[17],"adopted":[18,95],"in":[19,96,109,122],"private":[20],"and":[21,28,63,104],"public":[22],"financial":[23],"institutions,":[24],"businesses,":[25],"industries,":[26],"factories,":[27],"trading,":[29],"among":[30],"other":[31],"places.":[32],"SF":[33,68],"can":[34],"be":[35],"considered":[36],"an":[37,86,155],"emerging":[38],"example":[39],"of":[40,54,79,89,100,115,160,184],"employing":[41],"machine":[42],"learning":[43],"for":[44,106],"big":[45],"data":[46,125],"analysis":[47],"because":[48,99],"it":[49],"has":[50,93,119],"a":[51,70,77,80,116],"wide":[52,102],"range":[53],"data,":[55],"from":[56],"typical":[57,117],"supermarkets":[58],"up":[59],"huge":[61],"malls":[62],"companies.":[64],"This":[65],"paper":[66,98],"presents":[67],"using":[69],"recurrent":[71],"neural":[72,90],"network":[73],"(RNN)":[74],"obtain":[76],"forecast":[78],"market":[81,118],"product's":[82],"sales.":[83],"RNN":[84,162],"advanced":[87],"architecture":[88],"networks":[91],"that":[92],"been":[94,120,136,164],"this":[97],"its":[101],"adoption":[103],"usage":[105],"model-based":[107],"predictions":[108],"many":[110],"applications.":[111],"A":[112],"case":[113],"study":[114],"selected,":[121],"which":[123,145,170],"the":[124,150,161,178],"includes":[126],"800":[127],"products'":[128],"sales":[129,142,153],"over":[130],"49":[131],"weeks.":[132],"The":[133,157],"inputs/output":[134],"divided":[137],"into":[138],"three":[139],"past":[140],"weeks'":[141],"as":[143,154],"inputs,":[144],"are":[146],"used":[147],"predict":[149],"fourth":[151],"week's":[152],"output.":[156],"essential":[158],"parameters":[159],"tuned":[165],"through":[166],"several":[167],"training":[168],"trials,":[169],"eventually":[171],"gave":[172],"reasonably":[173],"accurate":[174],"results":[175],"measured":[176],"by":[177],"root":[179],"mean":[180],"squared":[181],"error":[182],"(RMSE)":[183],"0.039.":[185]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387914440","counts_by_year":[],"updated_date":"2024-12-08T16:10:35.896567","created_date":"2023-10-25"}