{"id":"https://openalex.org/W2963787226","doi":"https://doi.org/10.1109/ciss.2014.6814157","title":"Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions","display_name":"Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions","publication_year":2014,"publication_date":"2014-03-01","ids":{"openalex":"https://openalex.org/W2963787226","doi":"https://doi.org/10.1109/ciss.2014.6814157","mag":"2963787226"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ciss.2014.6814157","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5036435487","display_name":"Alekh Agarwal","orcid":"https://orcid.org/0000-0001-7032-7162"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"funder","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Alekh Agarwal","raw_affiliation_strings":["Microsoft Research, NY, New York"],"affiliations":[{"raw_affiliation_string":"Microsoft Research, NY, New York","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054929782","display_name":"Sahand Negahban","orcid":null},"institutions":[{"id":"https://openalex.org/I32971472","display_name":"Yale University","ror":"https://ror.org/03v76x132","country_code":"US","type":"funder","lineage":["https://openalex.org/I32971472"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sahand N. Negahban","raw_affiliation_strings":["Department of Statistics, Yale University"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, Yale University","institution_ids":["https://openalex.org/I32971472"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5038379562","display_name":"Martin J. Wainwright","orcid":"https://orcid.org/0000-0002-8760-2236"},"institutions":[{"id":"https://openalex.org/I95457486","display_name":"University of California, Berkeley","ror":"https://ror.org/01an7q238","country_code":"US","type":"funder","lineage":["https://openalex.org/I95457486"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Martin J. Wainwright","raw_affiliation_strings":["Department of EECS and Statistics, University of California, Berkeley"],"affiliations":[{"raw_affiliation_string":"Department of EECS and Statistics, University of California, Berkeley","institution_ids":["https://openalex.org/I95457486"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.288,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":4,"citation_normalized_percentile":{"value":0.432831,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":80},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"2"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11612","display_name":"Stochastic Gradient Optimization Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11612","display_name":"Stochastic Gradient Optimization Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/stochastic-gradient-descent","display_name":"Stochastic Gradient Descent","score":0.6253954},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.4644838}],"concepts":[{"id":"https://openalex.org/C206688291","wikidata":"https://www.wikidata.org/wiki/Q7617819","display_name":"Stochastic gradient descent","level":3,"score":0.6253954},{"id":"https://openalex.org/C57869625","wikidata":"https://www.wikidata.org/wiki/Q1783502","display_name":"Rate of convergence","level":3,"score":0.62517375},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.53391415},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.5311422},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.51668954},{"id":"https://openalex.org/C194387892","wikidata":"https://www.wikidata.org/wiki/Q1747770","display_name":"Stochastic optimization","level":2,"score":0.5140687},{"id":"https://openalex.org/C145446738","wikidata":"https://www.wikidata.org/wiki/Q319913","display_name":"Convex function","level":3,"score":0.4980166},{"id":"https://openalex.org/C157972887","wikidata":"https://www.wikidata.org/wiki/Q463359","display_name":"Convex optimization","level":3,"score":0.47434106},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.4644838},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.44802624},{"id":"https://openalex.org/C33676613","wikidata":"https://www.wikidata.org/wiki/Q13415176","display_name":"Dimension (graph theory)","level":2,"score":0.44243628},{"id":"https://openalex.org/C137836250","wikidata":"https://www.wikidata.org/wiki/Q984063","display_name":"Optimization problem","level":2,"score":0.429775},{"id":"https://openalex.org/C39927690","wikidata":"https://www.wikidata.org/wiki/Q11197","display_name":"Logarithm","level":2,"score":0.42066908},{"id":"https://openalex.org/C99844830","wikidata":"https://www.wikidata.org/wiki/Q102441924","display_name":"Scaling","level":2,"score":0.4101519},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.40005243},{"id":"https://openalex.org/C112680207","wikidata":"https://www.wikidata.org/wiki/Q714886","display_name":"Regular polygon","level":2,"score":0.34432828},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.17931896},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.081091136},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ciss.2014.6814157","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"http://arxiv.org/abs/1207.4421","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W131378802","https://openalex.org/W1482235099","https://openalex.org/W1505731132","https://openalex.org/W1551269584","https://openalex.org/W1553702074","https://openalex.org/W1556545893","https://openalex.org/W1969048569","https://openalex.org/W1992208280","https://openalex.org/W2020929673","https://openalex.org/W2096199223","https://openalex.org/W2096840748","https://openalex.org/W2099210013","https://openalex.org/W2103195393","https://openalex.org/W2113651538","https://openalex.org/W2116581043","https://openalex.org/W2136758284","https://openalex.org/W2140204814","https://openalex.org/W2142623206","https://openalex.org/W2146482778","https://openalex.org/W2151825876","https://openalex.org/W2159700154","https://openalex.org/W2161227280","https://openalex.org/W2164301055","https://openalex.org/W2169713291","https://openalex.org/W2267911020","https://openalex.org/W2404385938","https://openalex.org/W2405491068","https://openalex.org/W2566240941","https://openalex.org/W2950190315","https://openalex.org/W3006097074","https://openalex.org/W3012264151","https://openalex.org/W3013820469","https://openalex.org/W3017285694","https://openalex.org/W3101665129","https://openalex.org/W3102942031","https://openalex.org/W3103870504","https://openalex.org/W340056678","https://openalex.org/W4247571494","https://openalex.org/W4301435544"],"related_works":["https://openalex.org/W4389775782","https://openalex.org/W4323366756","https://openalex.org/W4286899070","https://openalex.org/W4285259204","https://openalex.org/W4234593354","https://openalex.org/W3207830353","https://openalex.org/W3002546633","https://openalex.org/W2963926425","https://openalex.org/W2913271688","https://openalex.org/W2893302333"],"abstract_inverted_index":{"Summary":[0],"form":[1,269],"only":[2],"given.":[3],"Stochastic":[4],"optimization":[5,190],"algorithms":[6,191],"have":[7,17,92,154],"many":[8,158,175,251],"desirable":[9,93],"features":[10,94,120],"for":[11,80,100,171,192,313,341,382,400,446],"large-scale":[12],"machine":[13],"learning,":[14],"and":[15,23,38,168,174,328,419,432],"accordingly":[16],"been":[18],"the":[19,27,33,68,71,149,162,201,216,229,248,268,277,281,286,295,300,333,413,417,439,442],"focus":[20],"of":[21,44,70,138,142,189,228,250,267,285,303,416],"renewed":[22],"intensive":[24],"study":[25],"in":[26,148,157,255,292,319,350,423],"last":[28],"several":[29],"years":[30],"(e.g.,":[31],"see":[32],"papers":[34,164],"[2],":[35],"[5],":[36,206],"[14]":[37,431],"references":[39,169],"therein).":[40],"The":[41,373],"empirical":[42],"efficiency":[43],"these":[45,289],"methods":[46,290,381],"is":[47,105,140,195,276,305,356],"backed":[48],"with":[49,75,200,297,346,403],"strong":[50,326],"theoretical":[51,410],"guarantees,":[52],"providing":[53],"sharp":[54],"bounds":[55],"on":[56,67,379],"their":[57,196,261],"convergence":[58,61,113,336,414],"rates.":[59],"These":[60],"rates":[62,77,265,399],"are":[63,84,122,131,394],"known":[64,211],"to":[65,125,180,257,299,323,359,396,425,441],"depend":[66],"structure":[69],"underlying":[72],"objective":[73,81,102],"function,":[74],"faster":[76,371],"being":[78],"possible":[79],"functions":[82],"that":[83,91,104,141,214,332,363,393],"smooth":[85],"and/or":[86],"(strongly)":[87],"convex,":[88,107],"or":[89,146],"optima":[90],"such":[95,182],"as":[96],"sparsity.":[97,329],"More":[98,208],"precisely,":[99,209],"an":[101,347],"function":[103],"strongly":[106,314,343,383],"stochastic":[108,230,433],"gradient":[109,434],"descent":[110,232,435],"enjoys":[111],"a":[112,237,342,369],"rate":[114,238,337,355,415],"ranging":[115],"from":[116],"O(1/T":[117],"),":[118],"when":[119,128,215],"vectors":[121,130],"extremely":[123],"sparse,":[124],"O(d/T":[126],")":[127,310],"feature":[129,188],"dense":[132],"[10],":[133],"[6].":[134],"A":[135,186],"complementary":[136],"type":[137],"condition":[139],"sparsity,":[143],"either":[144],"exact":[145],"approximate,":[147],"optimal":[150,217,398],"solution.":[151],"Sparse":[152],"models":[153],"proven":[155],"useful":[156],"application":[159,256],"areas":[160],"(see":[161],"overview":[163],"[4],":[165],"[9],":[166],"[3]":[167],"therein":[170],"further":[172],"background),":[173],"optimization-based":[176],"statistical":[177,401],"procedures":[178],"seek":[179],"exploit":[181,247],"sparsity":[183],"via":[184],"\u21131-regularization.":[185],"significant":[187],"sparse":[193,258,404],"problems":[194,385,402],"mild":[197],"logarithmic":[198],"scaling":[199,284,296],"problem":[202,345],"dimension":[203,287],"[11],":[204,212],"[12],":[205],"[14].":[207],"itis":[210],"[12]":[213],"solution":[218],"\u03b8":[219],"has":[220,335],"at":[221,236,368],"most":[222],"s":[223],"non-zero":[224],"entries,":[225],"appropriate":[226],"versions":[227],"mirror":[231],"algorithm":[233,317,334,365],"',/":[234,266],"converge":[235,367],"O(s":[239],"(log":[240],"d)/T":[241],").":[242],"Srebro":[243],"et":[244],"al.":[245],"[13]":[246],"smoothness":[249],"common":[252],"loss":[253],"functions;":[254],"linear":[259],"regression,":[260],"analysis":[262],"yields":[263],"improved":[264],"O(\u03b7":[270],"(s":[271],"log":[272,339],"d)/T),":[273],"where":[274],"\u03b7":[275],"noise":[278],"variance.":[279],"While":[280],"Vlog":[282],"d":[283,351],"makes":[288],"attractive":[291],"high":[293],"dimensions,":[294],"respect":[298],"number":[301],"V":[302],"iterations":[304],"relatively":[306],"slow-namely,":[307],"O(1/":[308],"T":[309],"versus":[311],"O(1/T)":[312],"convex":[315,344,384],"problems.The":[316],"proposed":[318],"this":[320,354],"paper":[321],"aims":[322],"use":[324],"both":[325],"convexity":[327],"We":[330,437],"show":[331],"O((s":[338],"d)/T)":[340],"s-sparse":[348],"optimum":[349],"dimensions.":[352],"Moreover,":[353],"unimprovable":[357],"up":[358],"constant":[360],"factors,":[361],"meaning":[362],"no":[364],"can":[366],"substantially":[370],"rate.":[372],"method":[374],"builds":[375],"off":[376],"recent":[377],"work":[378],"multi-step":[380],"[7],":[386],"[8],":[387],"but":[388],"involves":[389],"some":[390],"new":[391],"ingredients":[392],"essential":[395],"obtain":[397],"optima.":[405],"Numerical":[406],"simulations":[407],"confirm":[408],"our":[409],"predictions":[411],"regarding":[412],"algorithm,":[418],"demonstrate":[420],"its":[421],"performance":[422],"comparison":[424],"other":[426],"methods:":[427],"regularized":[428],"dual":[429],"averaging":[430],"algorithms.":[436],"refer":[438],"reader":[440],"full":[443],"report":[444],"[1]":[445],"more":[447],"details.":[448]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963787226","counts_by_year":[{"year":2021,"cited_by_count":2},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":1}],"updated_date":"2025-02-16T09:29:34.922863","created_date":"2019-07-30"}