{"id":"https://openalex.org/W2913769527","doi":"https://doi.org/10.1109/cisp-bmei.2018.8633233","title":"Automated Segmentation Based on Residual U-Net Model for MR Prostate Images","display_name":"Automated Segmentation Based on Residual U-Net Model for MR Prostate Images","publication_year":2018,"publication_date":"2018-10-01","ids":{"openalex":"https://openalex.org/W2913769527","doi":"https://doi.org/10.1109/cisp-bmei.2018.8633233","mag":"2913769527"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cisp-bmei.2018.8633233","pdf_url":null,"source":{"id":"https://openalex.org/S4363605805","display_name":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5001991790","display_name":"Xiangxiang Qin","orcid":null},"institutions":[{"id":"https://openalex.org/I143593769","display_name":"East China University of Science and Technology","ror":"https://ror.org/01vyrm377","country_code":"CN","type":"education","lineage":["https://openalex.org/I143593769"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qin Xiangxiang","raw_affiliation_strings":["College of Information Science and Engineering, East China University of Science and Technology Shanghai, China"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Engineering, East China University of Science and Technology Shanghai, China","institution_ids":["https://openalex.org/I143593769"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100673751","display_name":"Yu Zhu","orcid":"https://orcid.org/0000-0003-1535-6520"},"institutions":[{"id":"https://openalex.org/I143593769","display_name":"East China University of Science and Technology","ror":"https://ror.org/01vyrm377","country_code":"CN","type":"education","lineage":["https://openalex.org/I143593769"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhu Yu","raw_affiliation_strings":["College of Information Science and Engineering, East China University of Science and Technology Shanghai, China"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Engineering, East China University of Science and Technology Shanghai, China","institution_ids":["https://openalex.org/I143593769"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101650994","display_name":"Bingbing Zheng","orcid":"https://orcid.org/0000-0002-7174-474X"},"institutions":[{"id":"https://openalex.org/I143593769","display_name":"East China University of Science and Technology","ror":"https://ror.org/01vyrm377","country_code":"CN","type":"education","lineage":["https://openalex.org/I143593769"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zheng Bingbing","raw_affiliation_strings":["College of Information Science and Engineering, East China University of Science and Technology Shanghai, China"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Engineering, East China University of Science and Technology Shanghai, China","institution_ids":["https://openalex.org/I143593769"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.071,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.376192,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":74},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14510","display_name":"Medical Imaging and Analysis","score":0.9926,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.4372126}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.76156735},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68135107},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.64615196},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.56447554},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.55741245},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.49603352},{"id":"https://openalex.org/C2776235491","wikidata":"https://www.wikidata.org/wiki/Q9625","display_name":"Prostate","level":3,"score":0.4697122},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46656504},{"id":"https://openalex.org/C136943445","wikidata":"https://www.wikidata.org/wiki/Q1970240","display_name":"Histogram equalization","level":4,"score":0.44994324},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.4372126},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.38446745},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.17900926},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.17514038},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.11273101},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.107147366},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cisp-bmei.2018.8633233","pdf_url":null,"source":{"id":"https://openalex.org/S4363605805","display_name":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Partnerships for the goals","id":"https://metadata.un.org/sdg/17","score":0.46}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1574802394","https://openalex.org/W1901129140","https://openalex.org/W1980913318","https://openalex.org/W1988777729","https://openalex.org/W1989298041","https://openalex.org/W1998710995","https://openalex.org/W2075710862","https://openalex.org/W2106033751","https://openalex.org/W2138451308","https://openalex.org/W2153431772","https://openalex.org/W2194775991","https://openalex.org/W2211483859","https://openalex.org/W2316200131","https://openalex.org/W2566153047","https://openalex.org/W2604785265","https://openalex.org/W2604790786","https://openalex.org/W2768224069","https://openalex.org/W2772978751","https://openalex.org/W2790048445","https://openalex.org/W2964121744","https://openalex.org/W3014716101","https://openalex.org/W845365781"],"related_works":["https://openalex.org/W3106352174","https://openalex.org/W2949601986","https://openalex.org/W2945008095","https://openalex.org/W2560215812","https://openalex.org/W2387482914","https://openalex.org/W2354812287","https://openalex.org/W2162593906","https://openalex.org/W2129768207","https://openalex.org/W1997620750","https://openalex.org/W1773719955"],"abstract_inverted_index":{"Computer-assisted":[0],"prostate":[1,13,24,60,95,105],"clinical":[2,44],"diagnosis":[3],"is":[4,39,65],"significant":[5],"for":[6],"early":[7,10],"detection":[8],"and":[9,29,108,123,135,168],"treatment":[11],"of":[12,22,33,59,69,72,129,147],"cancer.":[14],"However,":[15],"due":[16],"to":[17,41,52,88,112],"the":[18,23,43,49,55,57,70,120,132,136,142,153,176],"small":[19],"effective":[20,149],"area":[21],"magnetic":[25],"resonance":[26],"(MR)":[27],"images":[28,64],"similar":[30],"gray":[31],"values":[32],"other":[34],"tissues":[35],"around":[36],"it,":[37],"it":[38],"arduous":[40],"meet":[42],"requirements":[45],"by":[46],"relying":[47],"on":[48,94,103,131],"professional":[50],"doctor":[51],"manually":[53],"sketch":[54],"boundary,":[56],"challenges":[58],"segmentation":[61,92],"from":[62],"MR":[63,96,106,121],"arduous.":[66],"In":[67],"consideration":[68],"superiority":[71],"convolution":[73],"network":[74,125,144],"in":[75,157,163,170],"image":[76,107,122],"processing":[77],"field,":[78],"we":[79,99,118,151],"propose":[80],"a":[81],"U-Net":[82],"model":[83,145],"combined":[84],"with":[85],"residual":[86],"connections":[87],"get":[89],"more":[90,148],"precise":[91],"result":[93],"images.":[97],"First,":[98],"perform":[100,124],"curvature-driven":[101],"denoising":[102],"each":[104],"use":[109],"histogram":[110],"equalization":[111],"obtain":[113],"potential":[114],"boundary":[115,165],"regions.":[116],"Then,":[117],"enhance":[119],"training.":[126],"The":[127],"results":[128],"experiments":[130],"PROMISE12":[133],"dataset":[134],"cooperative":[137],"hospital":[138],"datasets":[139],"indicate":[140],"that":[141],"proposed":[143,177],"capable":[146],"training,":[150],"got":[152],"0.872":[154],"\u00b1":[155],"0.053":[156],"dice":[158],"similarity":[159],"coefficient":[160],"(DSC),":[161],"1.45mm":[162],"average":[164],"distance":[166,172],"(ABD)":[167],"10.285mm":[169],"Harsdorf":[171],"(HD),":[173],"which":[174],"illustrates":[175],"method's":[178],"effectiveness.":[179]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2913769527","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":1}],"updated_date":"2024-12-14T17:16:23.869728","created_date":"2019-02-21"}