{"id":"https://openalex.org/W2565738382","doi":"https://doi.org/10.1109/cisis.2016.49","title":"A Study on the Optimum Number of Training Data in Snore Activity Detection Using SVM","display_name":"A Study on the Optimum Number of Training Data in Snore Activity Detection Using SVM","publication_year":2016,"publication_date":"2016-07-01","ids":{"openalex":"https://openalex.org/W2565738382","doi":"https://doi.org/10.1109/cisis.2016.49","mag":"2565738382"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cisis.2016.49","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102252410","display_name":"Keisuke Nishijima","orcid":null},"institutions":[{"id":"https://openalex.org/I188815454","display_name":"Oita University","ror":"https://ror.org/01nyv7k26","country_code":"JP","type":"education","lineage":["https://openalex.org/I188815454"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Keisuke Nishijima","raw_affiliation_strings":["Department of Computer Science and Intelligent Systems, Oita University, Japan"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Intelligent Systems, Oita University, Japan","institution_ids":["https://openalex.org/I188815454"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043978344","display_name":"Shingo Uenohara","orcid":null},"institutions":[{"id":"https://openalex.org/I188815454","display_name":"Oita University","ror":"https://ror.org/01nyv7k26","country_code":"JP","type":"education","lineage":["https://openalex.org/I188815454"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Shingo Uenohara","raw_affiliation_strings":["Department of Computer Science and Intelligent Systems, Oita University, Japan"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Intelligent Systems, Oita University, Japan","institution_ids":["https://openalex.org/I188815454"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5044786146","display_name":"Ken\u2019ichi Furuya","orcid":"https://orcid.org/0000-0002-5407-3673"},"institutions":[{"id":"https://openalex.org/I188815454","display_name":"Oita University","ror":"https://ror.org/01nyv7k26","country_code":"JP","type":"education","lineage":["https://openalex.org/I188815454"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Ken'ichi Furuya","raw_affiliation_strings":["Department of Computer Science and Intelligent Systems, Oita University, Japan"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Intelligent Systems, Oita University, Japan","institution_ids":["https://openalex.org/I188815454"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.248,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":4,"citation_normalized_percentile":{"value":0.373289,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"582","last_page":"584"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9937,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9937,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9847,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9762,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mel-frequency-cepstrum","display_name":"Mel-frequency cepstrum","score":0.51888186},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.48417762},{"id":"https://openalex.org/keywords/activity-recognition","display_name":"Activity Recognition","score":0.4642523},{"id":"https://openalex.org/keywords/cepstrum","display_name":"Cepstrum","score":0.41668677}],"concepts":[{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.8557112},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72714275},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.56732315},{"id":"https://openalex.org/C151989614","wikidata":"https://www.wikidata.org/wiki/Q440370","display_name":"Mel-frequency cepstrum","level":3,"score":0.51888186},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.48417762},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.48318687},{"id":"https://openalex.org/C121687571","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Activity recognition","level":2,"score":0.4642523},{"id":"https://openalex.org/C88485024","wikidata":"https://www.wikidata.org/wiki/Q1054571","display_name":"Cepstrum","level":2,"score":0.41668677},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.41396156},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3605827},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.262322},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08769557},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cisis.2016.49","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.75,"display_name":"Zero hunger","id":"https://metadata.un.org/sdg/2"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":2,"referenced_works":["https://openalex.org/W1601795611","https://openalex.org/W1663973292"],"related_works":["https://openalex.org/W4385672897","https://openalex.org/W2387604097","https://openalex.org/W2373675101","https://openalex.org/W2359140082","https://openalex.org/W2160511961","https://openalex.org/W2100203012","https://openalex.org/W2074132948","https://openalex.org/W2018086531","https://openalex.org/W1980297060","https://openalex.org/W106160982"],"abstract_inverted_index":{"Health":[0],"promotion":[1],"and":[2,8,15,68,80,117,160,174,184],"maintenance":[3],"is":[4,97,111,163],"becoming":[5],"increasingly":[6],"important":[7],"depends":[9],"on":[10,23,31],"three":[11],"elements:":[12],"nutrition,":[13],"exercise,":[14],"rest":[16],"(sleep).":[17],"In":[18,128],"the":[19,40,52,109,118,130,133,138,145,152,168,171,175,187],"present":[20],"study,":[21],"focusing":[22],"sleep,":[24],"we":[25,50,69,185],"develop":[26],"a":[27,63,92,106,156],"smartphone-based":[28],"system":[29],"based":[30],"snore":[32,59,126,181],"activity":[33,60,95,182],"detection":[34,61,74,96,172],"to":[35,72,124],"investigate":[36,167],"day-to-day":[37],"variations":[38],"in":[39,144,149,180],"sleep":[41,87],"state,":[42],"which":[43,148],"does":[44],"not":[45],"require":[46],"dedicated":[47],"hardware.":[48],"Here,":[49],"analyze":[51],"number":[53,140,176,189],"of":[54,132,141,177,190],"training":[55,142,178],"data":[56,89,143,179,191],"required":[57,192],"for":[58,193],"using":[62,91,102],"support":[64],"vector":[65],"machine":[66,100],"(SVM),":[67],"consider":[70],"ways":[71],"improve":[73],"performance.":[75],"The":[76],"sound":[77,88],"pressure":[78],"level":[79],"mel-frequency":[81],"cepstrum":[82],"coefficients":[83],"are":[84,122],"calculated":[85],"from":[86],"obtained":[90],"smartphone.":[93],"Snore":[94],"performed":[98],"by":[99,113],"learning":[101,146],"an":[103],"SVM":[104,110,120],"with":[105,137],"linear":[107],"kernel,":[108],"trained":[112,119],"labeled":[114],"acoustic":[115],"features,":[116],"models":[121,135],"used":[123],"detect":[125],"activity.":[127],"general,":[129],"accuracy":[131,159],"generated":[134],"increases":[136,151],"increasing":[139],"algorithm,":[147],"turn":[150],"computational":[153],"cost,":[154],"therefore,":[155],"balance":[157],"between":[158,170],"cost":[161],"efficiency":[162],"much":[164],"required.":[165],"We":[166],"relation":[169],"rate":[173],"detection,":[183],"propose":[186],"optimum":[188],"learning.":[194]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2565738382","counts_by_year":[{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":1}],"updated_date":"2024-12-06T19:18:44.394789","created_date":"2017-01-06"}