{"id":"https://openalex.org/W3011986875","doi":"https://doi.org/10.1109/cis.2019.00061","title":"Image Resampling Detection Based on Convolutional Neural Network","display_name":"Image Resampling Detection Based on Convolutional Neural Network","publication_year":2019,"publication_date":"2019-12-01","ids":{"openalex":"https://openalex.org/W3011986875","doi":"https://doi.org/10.1109/cis.2019.00061","mag":"3011986875"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cis.2019.00061","pdf_url":null,"source":{"id":"https://openalex.org/S4363608286","display_name":"2021 17th International Conference on Computational Intelligence and Security (CIS)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5055719654","display_name":"Yaohua Liang","orcid":null},"institutions":[{"id":"https://openalex.org/I157773358","display_name":"Sun Yat-sen University","ror":"https://ror.org/0064kty71","country_code":"CN","type":"funder","lineage":["https://openalex.org/I157773358"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yaohua Liang","raw_affiliation_strings":["School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China","institution_ids":["https://openalex.org/I157773358"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062946632","display_name":"Yanmei Fang","orcid":null},"institutions":[{"id":"https://openalex.org/I157773358","display_name":"Sun Yat-sen University","ror":"https://ror.org/0064kty71","country_code":"CN","type":"funder","lineage":["https://openalex.org/I157773358"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yanmei Fang","raw_affiliation_strings":["School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China","institution_ids":["https://openalex.org/I157773358"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035648394","display_name":"Shangjun Luo","orcid":null},"institutions":[{"id":"https://openalex.org/I157773358","display_name":"Sun Yat-sen University","ror":"https://ror.org/0064kty71","country_code":"CN","type":"funder","lineage":["https://openalex.org/I157773358"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shangjun Luo","raw_affiliation_strings":["School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China","institution_ids":["https://openalex.org/I157773358"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100443083","display_name":"Bing Chen","orcid":"https://orcid.org/0000-0001-5284-8618"},"institutions":[{"id":"https://openalex.org/I157773358","display_name":"Sun Yat-sen University","ror":"https://ror.org/0064kty71","country_code":"CN","type":"funder","lineage":["https://openalex.org/I157773358"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bing Chen","raw_affiliation_strings":["School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China","institution_ids":["https://openalex.org/I157773358"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.164,"has_fulltext":false,"cited_by_count":7,"citation_normalized_percentile":{"value":0.506942,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":"521","issue":null,"first_page":"257","last_page":"261"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12357","display_name":"Digital Media Forensic Detection","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12357","display_name":"Digital Media Forensic Detection","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12859","display_name":"Cell Image Analysis Techniques","score":0.9835,"subfield":{"id":"https://openalex.org/subfields/1304","display_name":"Biophysics"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.9789,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/resampling","display_name":"Resampling","score":0.87045926},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5661996},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.5488926},{"id":"https://openalex.org/keywords/interpolation","display_name":"Interpolation","score":0.45284522}],"concepts":[{"id":"https://openalex.org/C150921843","wikidata":"https://www.wikidata.org/wiki/Q1170431","display_name":"Resampling","level":2,"score":0.87045926},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7735169},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72125566},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6989418},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5661996},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.5488926},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.50617045},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.46923357},{"id":"https://openalex.org/C137800194","wikidata":"https://www.wikidata.org/wiki/Q11713455","display_name":"Interpolation (computer graphics)","level":3,"score":0.45284522},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.45237905},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.4520025},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.45027038},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.28299028},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cis.2019.00061","pdf_url":null,"source":{"id":"https://openalex.org/S4363608286","display_name":"2021 17th International Conference on Computational Intelligence and Security (CIS)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W1975528596","https://openalex.org/W2049771774","https://openalex.org/W2093512257","https://openalex.org/W2096933452","https://openalex.org/W2108017094","https://openalex.org/W2163470764","https://openalex.org/W2194775991","https://openalex.org/W2514123796","https://openalex.org/W2549139847","https://openalex.org/W2919115771","https://openalex.org/W2963703618","https://openalex.org/W4255023712"],"related_works":["https://openalex.org/W3212114011","https://openalex.org/W2767646790","https://openalex.org/W2352041579","https://openalex.org/W2141585124","https://openalex.org/W2138381686","https://openalex.org/W2052515325","https://openalex.org/W2050948537","https://openalex.org/W1998512593","https://openalex.org/W1998176685","https://openalex.org/W1488006380"],"abstract_inverted_index":{"When":[0],"an":[1,171],"image":[2,203,218],"is":[3,7,26,55,70,75,95,116,193,224,229],"under":[4],"tamper,":[5],"resampling":[6,33,67,112,145,154,176,204,212,233,245,258],"one":[8],"of":[9,22,32,41,48,63,118,128,159,187,240],"the":[10,16,20,30,39,45,61,80,86,90,99,108,135,153,157,167,182,185,188,196,216,232,237,244,251,257],"most":[11],"common":[12],"way":[13],"to":[14,28,37,57,60],"cover":[15],"tampering":[17],"artifacts.":[18],"With":[19],"development":[21],"tamper":[23],"tools,":[24],"it":[25,54,59,223],"difficult":[27],"detect":[29,256],"trace":[31,109],"through":[34],"artificial":[35],"features":[36],"verify":[38],"integrity":[40],"image.":[42],"Recently,":[43],"with":[44,210],"great":[46],"breakthrough":[47],"Deep":[49],"Learning":[50],"in":[51,85,134],"computer":[52],"vision,":[53],"necessary":[56],"apply":[58],"field":[62],"digital":[64],"forensic":[65],"like":[66],"detection.":[68,178],"As":[69],"well":[71],"known":[72],"that":[73,149,166,226,250],"there":[74],"a":[76,143],"strongly":[77],"relationship":[78],"between":[79],"pixels":[81],"and":[82,89,206],"its":[83],"surroundings":[84],"resampled":[87,197,217],"image,":[88],"Convolutional":[91],"Neural":[92],"Network":[93],"(CNN)":[94],"good":[96],"at":[97,231],"learning":[98],"underlying":[100],"relationship.":[101,162],"Low-dimensional":[102],"feature":[103,115,125,131,238,259],"can":[104,150,254],"hardly":[105],"find":[106],"out":[107],"introduced":[110,194],"by":[111,220],"while":[113],"high-dimensional":[114,136],"capable":[117],"doing":[119],"this.":[120],"The":[121],"CNN":[122,148,253],"has":[123,170],"excellent":[124,172],"extraction":[126],"ability":[127],"distinguishing":[129],"different":[130,175,211],"patterns":[132],"easily":[133],"space.":[137],"In":[138],"this":[139],"paper,":[140],"we":[141],"propose":[142],"novel":[144],"detection":[146,247],"supervised":[147],"automatically":[151],"learn":[152,202],"pattern":[155,205,234,239],"on":[156,174],"basis":[158],"residual":[160],"mapping":[161],"Experimental":[163],"results":[164],"show":[165,249],"proposed":[168,189,252],"method":[169,200,228],"performance":[173],"factor":[177],"Moreover,":[179],"experiments":[180],"demonstrate":[181],"robustness":[183],"against":[184],"noise":[186,192],"method.":[190],"After":[191],"into":[195],"images,":[198],"our":[199,227],"still":[201],"effectively":[207],"distinguish":[208],"images":[209],"factors.":[213],"By":[214],"detecting":[215],"generated":[219],"bilinear":[221],"interpolation,":[222],"shown":[225],"aimed":[230],"rather":[235],"than":[236],"cubic":[241],"interpolation.":[242],"Finally,":[243],"blind":[246],"experiment":[248],"indeed":[255],"pattern.":[260]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3011986875","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":3}],"updated_date":"2025-04-21T05:32:43.071137","created_date":"2020-03-23"}