{"id":"https://openalex.org/W3095358217","doi":"https://doi.org/10.1109/ciot50422.2020.9244289","title":"Attackers are not Stealthy: Statistical Analysis of the Well-Known and Infamous KDD Network Security Dataset","display_name":"Attackers are not Stealthy: Statistical Analysis of the Well-Known and Infamous KDD Network Security Dataset","publication_year":2020,"publication_date":"2020-10-07","ids":{"openalex":"https://openalex.org/W3095358217","doi":"https://doi.org/10.1109/ciot50422.2020.9244289","mag":"3095358217"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ciot50422.2020.9244289","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5074764815","display_name":"Joao Vitor Valle Silva","orcid":null},"institutions":[{"id":"https://openalex.org/I4210161640","display_name":"Samsung (Brazil)","ror":"https://ror.org/052a20h63","country_code":"BR","type":"company","lineage":["https://openalex.org/I2250650973","https://openalex.org/I4210161640"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Joao Vitor Valle Silva","raw_affiliation_strings":["M\u00eddiaCom - PPGEET/TCE/IC/UFF, Samsung Research - Campinas, SP, Brazil"],"affiliations":[{"raw_affiliation_string":"M\u00eddiaCom - PPGEET/TCE/IC/UFF, Samsung Research - Campinas, SP, Brazil","institution_ids":["https://openalex.org/I4210161640"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025235658","display_name":"Martin Andreoni Lopez","orcid":"https://orcid.org/0000-0002-4170-4341"},"institutions":[{"id":"https://openalex.org/I161127581","display_name":"Universidade Federal Fluminense","ror":"https://ror.org/02rjhbb08","country_code":"BR","type":"education","lineage":["https://openalex.org/I161127581"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Martin Andreoni Lopez","raw_affiliation_strings":["Universidade Federal Fluminense (UFF), Niter\u00f3i, RJ, Brazil"],"affiliations":[{"raw_affiliation_string":"Universidade Federal Fluminense (UFF), Niter\u00f3i, RJ, Brazil","institution_ids":["https://openalex.org/I161127581"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5076412136","display_name":"Diogo M. F. Mattos","orcid":"https://orcid.org/0000-0002-1279-7366"},"institutions":[{"id":"https://openalex.org/I4210161640","display_name":"Samsung (Brazil)","ror":"https://ror.org/052a20h63","country_code":"BR","type":"company","lineage":["https://openalex.org/I2250650973","https://openalex.org/I4210161640"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Diogo M. F. Mattos","raw_affiliation_strings":["M\u00eddiaCom - PPGEET/TCE/IC/UFF, Samsung Research - Campinas, SP, Brazil"],"affiliations":[{"raw_affiliation_string":"M\u00eddiaCom - PPGEET/TCE/IC/UFF, Samsung Research - Campinas, SP, Brazil","institution_ids":["https://openalex.org/I4210161640"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.15,"has_fulltext":false,"cited_by_count":12,"citation_normalized_percentile":{"value":0.839245,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11598","display_name":"Internet Traffic Analysis and Secure E-voting","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5970695}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7997583},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.60146827},{"id":"https://openalex.org/C35525427","wikidata":"https://www.wikidata.org/wiki/Q745881","display_name":"Intrusion detection system","level":2,"score":0.60061693},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5970695},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.56295097},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.45542},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41589448},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ciot50422.2020.9244289","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.7}],"grants":[{"funder":"https://openalex.org/F4320320997","funder_display_name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de S\u00e3o Paulo","award_id":"23062-5"}],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1554944419","https://openalex.org/W1984514442","https://openalex.org/W2041853937","https://openalex.org/W2099940443","https://openalex.org/W2108318847","https://openalex.org/W2115569246","https://openalex.org/W2141254179","https://openalex.org/W2148143831","https://openalex.org/W2185735639","https://openalex.org/W2291943985","https://openalex.org/W2313731608","https://openalex.org/W2527999453","https://openalex.org/W2738208587","https://openalex.org/W2809684781","https://openalex.org/W2866681005","https://openalex.org/W2889136050","https://openalex.org/W2946704785","https://openalex.org/W4285719527","https://openalex.org/W433644524"],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4321353415","https://openalex.org/W4283314094","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2364419519","https://openalex.org/W2360951146","https://openalex.org/W2360767377","https://openalex.org/W2130974462","https://openalex.org/W2017948608"],"abstract_inverted_index":{"Anomaly-based":[0],"approaches":[1,84],"for":[2,37,80,109],"detecting":[3],"network":[4,33,39],"intrusions":[5],"suffer":[6],"from":[7,132],"accurate":[8],"evaluation,":[9],"comparison,":[10],"and":[11,46,50,64,69,149,159],"deployment":[12],"due":[13],"to":[14,23,30,129],"the":[15,43,61,70,102,113,121],"scarcity":[16],"of":[17,107,115,123],"adequate":[18],"datasets.":[19],"Consequently,":[20],"researchers":[21],"resort":[22],"suboptimal":[24],"datasets":[25],"that":[26,67,137],"no":[27],"longer":[28],"relate":[29],"a":[31,57,78,91,144],"real-world":[32],"nor":[34],"provide":[35],"insights":[36],"current":[38],"issues,":[40],"such":[41],"as":[42,77],"DARPA'98":[44],"dataset":[45],"its":[47],"variants":[48],"KDD'99":[49,72],"NSL-KDD.":[51],"In":[52],"this":[53],"article,":[54],"we":[55,65],"propose":[56],"statistical":[58],"study":[59],"over":[60],"NSL-KDD":[62,68],"features,":[63],"conclude":[66],"old":[71],"should":[73],"not":[74,171],"be":[75],"used":[76],"benchmark":[79],"creating":[81],"novel":[82],"anomaly-based":[83],"intrusion":[85],"detection":[86],"systems":[87],"because":[88,141],"they":[89],"introduce":[90],"biased":[92,138],"classification,":[93],"since":[94],"features":[95,105,148,153],"are":[96,154,170],"over-correlated.":[97],"The":[98,151],"proposed":[99],"approach":[100],"analyzes":[101],"correlation":[103,146],"among":[104],"instead":[106],"checking":[108],"redundant":[110],"values":[111],"or":[112],"imbalance":[114],"data.":[116],"Our":[117],"results":[118],"align":[119],"with":[120],"performance":[122],"three":[124],"machine":[125],"learning":[126],"techniques":[127],"trained":[128],"discriminate":[130],"attack":[131,160],"normal":[133,158],"traffic.":[134],"We":[135],"show":[136],"classification":[139],"occurs":[140],"there":[142],"was":[143],"high":[145],"between":[147,157],"classes.":[150],"syntactically-generated":[152],"statistically":[155],"different":[156],"traffic":[161],"classes,":[162],"which":[163],"implies":[164],"that,":[165],"in":[166],"KDD-related":[167],"datasets,":[168],"attackers":[169],"stealthy.":[172]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3095358217","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":5}],"updated_date":"2025-01-04T21:41:09.613045","created_date":"2020-11-09"}