{"id":"https://openalex.org/W2106145857","doi":"https://doi.org/10.1109/cib.2009.4925684","title":"Multi-level iris video image thresholding","display_name":"Multi-level iris video image thresholding","publication_year":2009,"publication_date":"2009-03-01","ids":{"openalex":"https://openalex.org/W2106145857","doi":"https://doi.org/10.1109/cib.2009.4925684","mag":"2106145857"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cib.2009.4925684","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5085143469","display_name":"Yingzi Du","orcid":null},"institutions":[{"id":"https://openalex.org/I55769427","display_name":"Indiana University \u2013 Purdue University Indianapolis","ror":"https://ror.org/05gxnyn08","country_code":"US","type":"funder","lineage":["https://openalex.org/I4407990318","https://openalex.org/I55769427","https://openalex.org/I592451"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yingzi Du","raw_affiliation_strings":["biometrics and pattern recognition laboratory in the Electrical and Computer Engineering Department, Indiana University-Purdue University Indianapolis, 46202, USA"],"affiliations":[{"raw_affiliation_string":"biometrics and pattern recognition laboratory in the Electrical and Computer Engineering Department, Indiana University-Purdue University Indianapolis, 46202, USA","institution_ids":["https://openalex.org/I55769427"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110072717","display_name":"N. Luke Thomas","orcid":null},"institutions":[{"id":"https://openalex.org/I55769427","display_name":"Indiana University \u2013 Purdue University Indianapolis","ror":"https://ror.org/05gxnyn08","country_code":"US","type":"funder","lineage":["https://openalex.org/I4407990318","https://openalex.org/I55769427","https://openalex.org/I592451"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"N. Luke Thomas","raw_affiliation_strings":["biometrics and pattern recognition laboratory in the Electrical and Computer Engineering Department, Indiana University-Purdue University Indianapolis, 46202, USA"],"affiliations":[{"raw_affiliation_string":"biometrics and pattern recognition laboratory in the Electrical and Computer Engineering Department, Indiana University-Purdue University Indianapolis, 46202, USA","institution_ids":["https://openalex.org/I55769427"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5037883580","display_name":"Emrah Arslanturk","orcid":null},"institutions":[{"id":"https://openalex.org/I55769427","display_name":"Indiana University \u2013 Purdue University Indianapolis","ror":"https://ror.org/05gxnyn08","country_code":"US","type":"funder","lineage":["https://openalex.org/I4407990318","https://openalex.org/I55769427","https://openalex.org/I592451"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Emrah Arslanturk","raw_affiliation_strings":["biometrics and pattern recognition laboratory in the Electrical and Computer Engineering Department, Indiana University-Purdue University Indianapolis, 46202, USA"],"affiliations":[{"raw_affiliation_string":"biometrics and pattern recognition laboratory in the Electrical and Computer Engineering Department, Indiana University-Purdue University Indianapolis, 46202, USA","institution_ids":["https://openalex.org/I55769427"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.713,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":9,"citation_normalized_percentile":{"value":0.731361,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"38","last_page":"45"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10828","display_name":"Biometric Identification and Security","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10828","display_name":"Biometric Identification and Security","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/balanced-histogram-thresholding","display_name":"Balanced histogram thresholding","score":0.6108484},{"id":"https://openalex.org/keywords/iris-recognition","display_name":"Iris Recognition","score":0.6041515},{"id":"https://openalex.org/keywords/iris","display_name":"IRIS (biosensor)","score":0.50351614}],"concepts":[{"id":"https://openalex.org/C191178318","wikidata":"https://www.wikidata.org/wiki/Q2256906","display_name":"Thresholding","level":3,"score":0.9150107},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.869957},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.7596946},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75234},{"id":"https://openalex.org/C202577368","wikidata":"https://www.wikidata.org/wiki/Q2576067","display_name":"Balanced histogram thresholding","level":5,"score":0.6108484},{"id":"https://openalex.org/C112356035","wikidata":"https://www.wikidata.org/wiki/Q1672722","display_name":"Iris recognition","level":3,"score":0.6041515},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.5946202},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.5570593},{"id":"https://openalex.org/C184297639","wikidata":"https://www.wikidata.org/wiki/Q177765","display_name":"Biometrics","level":2,"score":0.55316585},{"id":"https://openalex.org/C2779503344","wikidata":"https://www.wikidata.org/wiki/Q5973514","display_name":"IRIS (biosensor)","level":3,"score":0.50351614},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.47771668},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.45258436},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.3678196},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.36184338},{"id":"https://openalex.org/C136943445","wikidata":"https://www.wikidata.org/wiki/Q1970240","display_name":"Histogram equalization","level":4,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cib.2009.4925684","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1554663460","https://openalex.org/W1967368267","https://openalex.org/W1974821667","https://openalex.org/W1978818813","https://openalex.org/W1984153831","https://openalex.org/W1987087490","https://openalex.org/W2020970114","https://openalex.org/W2021422668","https://openalex.org/W2022702191","https://openalex.org/W2023438527","https://openalex.org/W2040322660","https://openalex.org/W2048889026","https://openalex.org/W2065447745","https://openalex.org/W2083970667","https://openalex.org/W2096194148","https://openalex.org/W2099242680","https://openalex.org/W2115235609","https://openalex.org/W2122017330","https://openalex.org/W2133059825","https://openalex.org/W2133921367","https://openalex.org/W2139695910","https://openalex.org/W2141358266","https://openalex.org/W2151148935","https://openalex.org/W2167075312","https://openalex.org/W2167499379","https://openalex.org/W2272464298","https://openalex.org/W2273395821","https://openalex.org/W4252410133","https://openalex.org/W42766035"],"related_works":["https://openalex.org/W4248730019","https://openalex.org/W2750730210","https://openalex.org/W2461888822","https://openalex.org/W2408743214","https://openalex.org/W2387104004","https://openalex.org/W2353864504","https://openalex.org/W2162640687","https://openalex.org/W2113070050","https://openalex.org/W2032558130","https://openalex.org/W1990592446"],"abstract_inverted_index":{"Iris":[0],"recognition":[1,18],"has":[2],"been":[3],"shown":[4],"to":[5,32,103,111,116,153],"be":[6,21,30,44,151],"one":[7],"of":[8,82],"the":[9,34,54,70,83,105,114,117,123,147,161],"most":[10],"accurate":[11],"biometrics.":[12],"However,":[13,57],"under":[14],"non-ideal":[15],"situations,":[16,26],"its":[17],"accuracy":[19],"can":[20,29,51,138,150],"reduced":[22],"dramatically.":[23],"Under":[24],"such":[25],"video":[27,73,89],"images":[28,87,130,155],"used":[31,102,110],"improve":[33,53],"accuracy.":[35],"The":[36,119,128],"traditional":[37,58],"single":[38],"image":[39,47,74,115],"based":[40,48,90],"segmentation":[41,55,142],"method":[42,50,76,125,149],"could":[43],"inefficient.":[45],"Video":[46],"thresholding":[49,59,75,97],"help":[52,139],"efficiency.":[56],"methods":[60],"are":[61,158],"not":[62],"designed":[63],"for":[64,88],"iris":[65,72,135,141],"images.":[66],"In":[67,145],"this":[68],"paper,":[69],"multi-level":[71],"is":[77,93,101,109,126],"proposed.":[78],"It":[79,92],"takes":[80],"advantage":[81],"correlations":[84],"between":[85],"consecutive":[86],"thresholding.":[91],"an":[94],"orientation":[95],"invariant":[96],"scheme.":[98],"K-mean":[99],"clustering":[100],"find":[104],"clusters":[106],"and":[107,134,143],"PCA":[108],"quickly":[112],"project":[113],"clusters.":[118],"experimental":[120],"results":[121],"show":[122,131],"proposed":[124,148],"effective.":[127],"thresholded":[129],"clear":[132],"pupil":[133],"areas,":[136],"which":[137],"further":[140],"processing.":[144],"addition,":[146],"applied":[152],"non-video":[154],"if":[156],"they":[157],"obtained":[159],"from":[160],"same":[162],"sensor":[163],"with":[164],"similar":[165],"illumination":[166],"conditions.":[167]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2106145857","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2016,"cited_by_count":2},{"year":2012,"cited_by_count":4}],"updated_date":"2025-04-18T18:26:21.660571","created_date":"2016-06-24"}