{"id":"https://openalex.org/W4294811557","doi":"https://doi.org/10.1109/cec55065.2022.9870275","title":"A Primary Study on Hyper-Heuristics Powered by Artificial Neural Networks for Customising Population-based Metaheuristics in Continuous Optimisation Problems","display_name":"A Primary Study on Hyper-Heuristics Powered by Artificial Neural Networks for Customising Population-based Metaheuristics in Continuous Optimisation Problems","publication_year":2022,"publication_date":"2022-07-18","ids":{"openalex":"https://openalex.org/W4294811557","doi":"https://doi.org/10.1109/cec55065.2022.9870275"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cec55065.2022.9870275","pdf_url":null,"source":{"id":"https://openalex.org/S4363605353","display_name":"2022 IEEE Congress on Evolutionary Computation (CEC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5009491890","display_name":"Jos\u00e9 M. Tapia-Avitia","orcid":"https://orcid.org/0000-0002-4991-9435"},"institutions":[{"id":"https://openalex.org/I98461037","display_name":"Tecnol\u00f3gico de Monterrey","ror":"https://ror.org/03ayjn504","country_code":"MX","type":"education","lineage":["https://openalex.org/I98461037"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"Jose M. Tapia-Avitia","raw_affiliation_strings":["Tecnologico de Monterrey, Monterrey, Mexico"],"affiliations":[{"raw_affiliation_string":"Tecnologico de Monterrey, Monterrey, Mexico","institution_ids":["https://openalex.org/I98461037"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086193689","display_name":"Jorge M. Cruz\u2013Duarte","orcid":"https://orcid.org/0000-0003-4494-7864"},"institutions":[{"id":"https://openalex.org/I98461037","display_name":"Tecnol\u00f3gico de Monterrey","ror":"https://ror.org/03ayjn504","country_code":"MX","type":"education","lineage":["https://openalex.org/I98461037"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"Jorge M. Cruz-Duarte","raw_affiliation_strings":["Tecnologico de Monterrey, Monterrey, Mexico"],"affiliations":[{"raw_affiliation_string":"Tecnologico de Monterrey, Monterrey, Mexico","institution_ids":["https://openalex.org/I98461037"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040026225","display_name":"Iv\u00e1n Amaya","orcid":"https://orcid.org/0000-0002-8821-7137"},"institutions":[{"id":"https://openalex.org/I98461037","display_name":"Tecnol\u00f3gico de Monterrey","ror":"https://ror.org/03ayjn504","country_code":"MX","type":"education","lineage":["https://openalex.org/I98461037"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"Ivan Amaya","raw_affiliation_strings":["Tecnologico de Monterrey, Monterrey, Mexico"],"affiliations":[{"raw_affiliation_string":"Tecnologico de Monterrey, Monterrey, Mexico","institution_ids":["https://openalex.org/I98461037"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027131130","display_name":"Jos\u00e9 Carlos Ort\u00edz-Bayliss","orcid":"https://orcid.org/0000-0003-3408-2166"},"institutions":[{"id":"https://openalex.org/I98461037","display_name":"Tecnol\u00f3gico de Monterrey","ror":"https://ror.org/03ayjn504","country_code":"MX","type":"education","lineage":["https://openalex.org/I98461037"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"Jose Carlos Ortiz-Bayliss","raw_affiliation_strings":["Tecnologico de Monterrey, Monterrey, Mexico"],"affiliations":[{"raw_affiliation_string":"Tecnologico de Monterrey, Monterrey, Mexico","institution_ids":["https://openalex.org/I98461037"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049386377","display_name":"Hugo Terashima\u2010Mar\u00edn","orcid":"https://orcid.org/0000-0002-5320-0773"},"institutions":[{"id":"https://openalex.org/I98461037","display_name":"Tecnol\u00f3gico de Monterrey","ror":"https://ror.org/03ayjn504","country_code":"MX","type":"education","lineage":["https://openalex.org/I98461037"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"Hugo Terashima-Marin","raw_affiliation_strings":["Tecnologico de Monterrey, Monterrey, Mexico"],"affiliations":[{"raw_affiliation_string":"Tecnologico de Monterrey, Monterrey, Mexico","institution_ids":["https://openalex.org/I98461037"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5060039893","display_name":"Nelishia Pillay","orcid":"https://orcid.org/0000-0003-3902-5582"},"institutions":[{"id":"https://openalex.org/I69552723","display_name":"University of Pretoria","ror":"https://ror.org/00g0p6g84","country_code":"ZA","type":"education","lineage":["https://openalex.org/I69552723"]}],"countries":["ZA"],"is_corresponding":false,"raw_author_name":"Nelishia Pillay","raw_affiliation_strings":["University of Pretoria, Pretoria, South Africa"],"affiliations":[{"raw_affiliation_string":"University of Pretoria, Pretoria, South Africa","institution_ids":["https://openalex.org/I69552723"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.703,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.684238,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10100","display_name":"Metaheuristic Optimization Algorithms Research","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10100","display_name":"Metaheuristic Optimization Algorithms Research","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12401","display_name":"Scheduling and Timetabling Solutions","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10567","display_name":"Vehicle Routing Optimization Methods","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/heuristics","display_name":"Heuristics","score":0.76889336}],"concepts":[{"id":"https://openalex.org/C127705205","wikidata":"https://www.wikidata.org/wiki/Q5748245","display_name":"Heuristics","level":2,"score":0.76889336},{"id":"https://openalex.org/C109718341","wikidata":"https://www.wikidata.org/wiki/Q1385229","display_name":"Metaheuristic","level":2,"score":0.73083764},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.676088},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6326579},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.62706155},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.6106247},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5507121},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.53928936},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.47337097},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.45316166},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.14079025},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cec55065.2022.9870275","pdf_url":null,"source":{"id":"https://openalex.org/S4363605353","display_name":"2022 IEEE Congress on Evolutionary Computation (CEC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","score":0.41,"id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W2081272667","https://openalex.org/W2151554678","https://openalex.org/W2169209574","https://openalex.org/W2264593986","https://openalex.org/W2759228580","https://openalex.org/W2763251821","https://openalex.org/W2891971415","https://openalex.org/W2894900521","https://openalex.org/W2979826702","https://openalex.org/W2982096755","https://openalex.org/W3015862467","https://openalex.org/W3043139646","https://openalex.org/W3083600904","https://openalex.org/W3098687075","https://openalex.org/W3104621635","https://openalex.org/W3106379984","https://openalex.org/W3107661864","https://openalex.org/W3128946898","https://openalex.org/W3135934252","https://openalex.org/W3168839731","https://openalex.org/W3174286198","https://openalex.org/W3175278125","https://openalex.org/W3202595224"],"related_works":["https://openalex.org/W4288754364","https://openalex.org/W3153283566","https://openalex.org/W2978705149","https://openalex.org/W2965145359","https://openalex.org/W2594987874","https://openalex.org/W2107842180","https://openalex.org/W1991031756","https://openalex.org/W1857440237","https://openalex.org/W1629725936","https://openalex.org/W1068348394"],"abstract_inverted_index":{"Metaheuristics":[0],"(MHs)":[1],"are":[2,40],"proven":[3],"powerful":[4],"algorithms":[5],"for":[6,109],"solving":[7],"non-linear":[8],"optimisation":[9],"problems":[10],"over":[11],"discrete,":[12],"continuous,":[13],"or":[14],"mixed":[15],"domains.":[16],"Applications":[17],"have":[18,69],"ranged":[19],"from":[20,44,64],"basic":[21,204],"sciences":[22],"to":[23,51,81,90,97,123,151,158,224,230],"applied":[24],"technologies.":[25],"Nowadays,":[26],"the":[27,71,82,91,94,99,125,128,164,171,187,214,218,231],"literature":[28],"contains":[29],"plenty":[30],"of":[31,73,93,107,116,127,149,166,193,196,203,208,217],"MHs":[32,119,175],"based":[33,139],"on":[34,140],"exceptional":[35],"ideas,":[36],"but":[37],"often,":[38],"they":[39,86],"just":[41],"recombining":[42],"elements":[43],"other":[45,177],"techniques.":[46],"An":[47],"alternative":[48],"approach":[49],"is":[50],"follow":[52],"a":[53,105,111,136],"standard":[54],"model":[55,112,138,168,189],"that":[56,113,154,179,186],"customises":[57],"population-based":[58],"MHs,":[59],"utilising":[60],"simple":[61,75],"heuristics":[62,150],"extracted":[63],"well-known":[65],"MHs.":[66,84,161,182],"Different":[67],"approaches":[68,178],"explored":[70],"combination":[72],"such":[74],"heuristics,":[76],"generating":[77,234],"excellent":[78],"results":[79,172,184,236],"compared":[80],"generic":[83,174],"Nevertheless,":[85],"present":[87],"limitations":[88],"due":[89],"nature":[92],"metaheuristic":[95],"used":[96],"study":[98],"heuristic":[100],"space.":[101],"This":[102],"work":[103],"investigates":[104],"field":[106],"action":[108],"implementing":[110],"takes":[114],"advantage":[115],"previously":[117],"modified":[118],"by":[120,169],"learning":[121],"how":[122],"boost":[124],"performance":[126],"tailoring":[129],"process.":[130],"Following":[131],"this":[132,167],"reasoning,":[133],"we":[134,212],"propose":[135],"hyper-heuristic":[137],"Artificial":[141],"Neural":[142],"Networks":[143],"(ANNs)":[144],"trained":[145],"with":[146,238],"processed":[147],"sequences":[148],"identify":[152],"patterns":[153],"one":[155],"can":[156],"use":[157],"generate":[159],"better":[160],"We":[162],"prove":[163],"feasibility":[165],"comparing":[170],"against":[173],"and":[176,205],"tailor":[180],"unfolded":[181,209],"Our":[183],"evidenced":[185],"proposed":[188,219],"outperformed":[190],"an":[191],"average":[192],"84":[194],"%":[195,202,207],"all":[197],"scenarios;":[198],"in":[199,228],"particular,":[200],"89":[201],"77":[206],"approaches.":[210],"Plus,":[211],"highlight":[213],"configurable":[215],"capability":[216],"model,":[220],"as":[221],"it":[222],"shows":[223],"be":[225],"exceptionally":[226],"versatile":[227],"regards":[229],"computational":[232],"budget,":[233],"good":[235],"even":[237],"limited":[239],"resources.":[240]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4294811557","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-06T10:54:36.333778","created_date":"2022-09-06"}