{"id":"https://openalex.org/W3192181181","doi":"https://doi.org/10.1109/cec45853.2021.9504875","title":"Solar Irradiance Forecasting in Tropical Weather using an Evolutionary Lean Neural Network","display_name":"Solar Irradiance Forecasting in Tropical Weather using an Evolutionary Lean Neural Network","publication_year":2021,"publication_date":"2021-06-28","ids":{"openalex":"https://openalex.org/W3192181181","doi":"https://doi.org/10.1109/cec45853.2021.9504875","mag":"3192181181"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cec45853.2021.9504875","pdf_url":null,"source":{"id":"https://openalex.org/S4363605353","display_name":"2022 IEEE Congress on Evolutionary Computation (CEC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081012222","display_name":"Yong Wee Foo","orcid":null},"institutions":[{"id":"https://openalex.org/I21419654","display_name":"Nanyang Polytechnic","ror":"https://ror.org/04af7ga89","country_code":"SG","type":"education","lineage":["https://openalex.org/I1280293394","https://openalex.org/I21419654"]},{"id":"https://openalex.org/I4210115515","display_name":"Nanyang Institute of Technology","ror":"https://ror.org/0203c2755","country_code":"CN","type":"education","lineage":["https://openalex.org/I4210115515"]}],"countries":["CN","SG"],"is_corresponding":false,"raw_author_name":"Yong Wee Foo","raw_affiliation_strings":["School of Engineering, Nanyang Polytechnic"],"affiliations":[{"raw_affiliation_string":"School of Engineering, Nanyang Polytechnic","institution_ids":["https://openalex.org/I21419654","https://openalex.org/I4210115515"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5015500466","display_name":"Cindy Goh","orcid":"https://orcid.org/0000-0001-6735-9972"},"institutions":[{"id":"https://openalex.org/I7882870","display_name":"University of Glasgow","ror":"https://ror.org/00vtgdb53","country_code":"GB","type":"education","lineage":["https://openalex.org/I7882870"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Cindy Goh","raw_affiliation_strings":["School of Engineering, University of Glasgow"],"affiliations":[{"raw_affiliation_string":"School of Engineering, University of Glasgow","institution_ids":["https://openalex.org/I7882870"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.203,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.542866,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":72},"biblio":{"volume":null,"issue":null,"first_page":"490","last_page":"497"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11276","display_name":"Solar Radiation and Photovoltaics","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11276","display_name":"Solar Radiation and Photovoltaics","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10468","display_name":"Photovoltaic System Optimization Techniques","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/2105","display_name":"Renewable Energy, Sustainability and the Environment"},"field":{"id":"https://openalex.org/fields/21","display_name":"Energy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9926,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.507712}],"concepts":[{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.7004698},{"id":"https://openalex.org/C9695528","wikidata":"https://www.wikidata.org/wiki/Q7556707","display_name":"Solar irradiance","level":2,"score":0.6765264},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.61542827},{"id":"https://openalex.org/C85617194","wikidata":"https://www.wikidata.org/wiki/Q2072794","display_name":"Particle swarm optimization","level":2,"score":0.60859543},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5534468},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.507712},{"id":"https://openalex.org/C8880873","wikidata":"https://www.wikidata.org/wiki/Q187787","display_name":"Genetic algorithm","level":2,"score":0.50737995},{"id":"https://openalex.org/C46423501","wikidata":"https://www.wikidata.org/wiki/Q830654","display_name":"Irradiance","level":2,"score":0.43437952},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37431505},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.35076553},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3145354},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.31228337},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.25313336},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.23124224},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.10536134},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cec45853.2021.9504875","pdf_url":null,"source":{"id":"https://openalex.org/S4363605353","display_name":"2022 IEEE Congress on Evolutionary Computation (CEC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9","score":0.52}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W192889839","https://openalex.org/W1987302169","https://openalex.org/W1989649856","https://openalex.org/W2099365903","https://openalex.org/W2117671523","https://openalex.org/W2133798770","https://openalex.org/W223770991","https://openalex.org/W2409378170","https://openalex.org/W2613360700","https://openalex.org/W2799674728","https://openalex.org/W2886807638","https://openalex.org/W2898399263","https://openalex.org/W2909680253","https://openalex.org/W2924135058","https://openalex.org/W2944920662","https://openalex.org/W2960560113","https://openalex.org/W2961138138","https://openalex.org/W2963151450","https://openalex.org/W2963928450","https://openalex.org/W2976858096","https://openalex.org/W2979067816","https://openalex.org/W2990065292","https://openalex.org/W2990479248","https://openalex.org/W3047319676"],"related_works":["https://openalex.org/W4322211974","https://openalex.org/W3201088759","https://openalex.org/W3104379783","https://openalex.org/W2995848355","https://openalex.org/W2884263184","https://openalex.org/W2131174359","https://openalex.org/W2023949803","https://openalex.org/W1749313231","https://openalex.org/W1578057650","https://openalex.org/W1530649511"],"abstract_inverted_index":{"Clean":[0],"electricity":[1],"system":[2],"based":[3],"on":[4],"solar":[5,14,21,30,46,90],"energy":[6],"is":[7],"rapidly":[8],"growing.":[9],"However,":[10],"the":[11,26,38,78,103,114,145,160,164,168,174,189,201,221],"intermittency":[12],"of":[13,28,52,89,105,120,133,203],"power":[15,31],"remains":[16],"an":[17,68],"issue.":[18],"An":[19],"accurate":[20],"irradiance":[22,47,91],"forecast":[23,88],"can":[24],"mitigate":[25],"impact":[27],"variable":[29,216],"generation.":[32],"In":[33],"this":[34],"paper,":[35],"we":[36],"present":[37],"Evolutionary":[39],"Lean":[40],"Neural":[41],"Network":[42],"(EVLNN)":[43],"for":[44,220],"time-series":[45],"forecasting.":[48],"The":[49,192],"key":[50],"novelty":[51],"EVLNN":[53],"lies":[54],"in":[55,109,200],"incorporating":[56],"a":[57,61,86,118,183,204,213],"feedback":[58],"structure":[59],"to":[60,72,84,187],"partially":[62],"connected":[63,176],"neural":[64,151,180],"network":[65,181],"while":[66],"using":[67,117,154,232],"improved":[69,218],"genetic":[70],"algorithm":[71],"optimize":[73],"its":[74],"architecture.":[75],"We":[76,101,142,172],"train":[77],"model":[79,110,115,210],"with":[80,147,212,229],"tropical":[81],"weather":[82],"data":[83],"provide":[85],"days-ahead":[87],"at":[92],"four":[93],"different":[94],"time-steps:":[95],"1-min,":[96],"15-min,":[97],"30-min,":[98,223],"and":[99,112,130,167,224],"hourly.":[100],"investigate":[102],"effects":[104],"fewer":[106],"input":[107,215],"features":[108],"training":[111],"assess":[113],"accuracy":[116],"combination":[119],"Root":[121],"Mean":[122,126],"Square":[123],"Error":[124,128],"(RMSE),":[125],"Absolute":[127],"(MAE),":[129],"Adjusted":[131],"Coefficient":[132],"Determination":[134],"(Adjusted":[135],"R":[136],"2":[139],")":[140],"metrics.":[141],"then":[143],"compare":[144],"results":[146,193],"those":[148,230],"obtained":[149],"from":[150],"networks":[152],"modeled":[153,231],"other":[155,233],"evolutionary":[156],"algorithms":[157],"(EA),":[158],"namely":[159],"Particle":[161],"Swarm":[162],"Optimization,":[163],"Differential":[165],"Evolution,":[166],"classic":[169],"Genetic":[170],"Algorithm.":[171],"include":[173],"fully":[175],"nonlinear":[177],"time-delay":[178],"backpropagation":[179],"as":[182],"benchmark":[184],"against":[185],"which":[186],"evaluate":[188],"EA-based":[190],"models.":[191],"demonstrated":[194],"EVLNN's":[195],"good":[196],"generalization":[197],"capability,":[198],"specifically":[199],"presence":[202],"sparse":[205],"dataset.":[206],"Moreover,":[207],"our":[208],"proposed":[209],"trained":[211],"single":[214],"achieved":[217],"performance":[219],"hourly,":[222],"15-min":[225],"time-step":[226],"predictions":[227],"compared":[228],"learning":[234],"algorithms.":[235]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3192181181","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-14T09:15:43.837175","created_date":"2021-08-16"}