{"id":"https://openalex.org/W2969185746","doi":"https://doi.org/10.1109/cec.2019.8790295","title":"Learning to Solve Capacitated Arc Routing Problems by Policy Gradient","display_name":"Learning to Solve Capacitated Arc Routing Problems by Policy Gradient","publication_year":2019,"publication_date":"2019-06-01","ids":{"openalex":"https://openalex.org/W2969185746","doi":"https://doi.org/10.1109/cec.2019.8790295","mag":"2969185746"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cec.2019.8790295","pdf_url":null,"source":{"id":"https://openalex.org/S4363605353","display_name":"2022 IEEE Congress on Evolutionary Computation (CEC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100742568","display_name":"Li Han","orcid":"https://orcid.org/0000-0002-0975-9908"},"institutions":[{"id":"https://openalex.org/I126520041","display_name":"University of Science and Technology of China","ror":"https://ror.org/04c4dkn09","country_code":"CN","type":"funder","lineage":["https://openalex.org/I126520041","https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Han Li","raw_affiliation_strings":["School of Computer Science and Technology, University of Science and Technology of China, Hefei, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, University of Science and Technology of China, Hefei, China","institution_ids":["https://openalex.org/I126520041"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101792470","display_name":"Guiying Li","orcid":"https://orcid.org/0000-0002-9445-3451"},"institutions":[{"id":"https://openalex.org/I3045169105","display_name":"Southern University of Science and Technology","ror":"https://ror.org/049tv2d57","country_code":"CN","type":"funder","lineage":["https://openalex.org/I3045169105"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guiying Li","raw_affiliation_strings":["Shenzhen Key Laboratory of Computational Intelligence, Southern University of Science and Technology, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Shenzhen Key Laboratory of Computational Intelligence, Southern University of Science and Technology, Shenzhen, China","institution_ids":["https://openalex.org/I3045169105"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.029,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.803097,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":80},"biblio":{"volume":null,"issue":null,"first_page":"1291","last_page":"1298"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10567","display_name":"Vehicle Routing Optimization Methods","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10567","display_name":"Vehicle Routing Optimization Methods","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12176","display_name":"Optimization and Packing Problems","score":0.966,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12288","display_name":"Optimization and Search Problems","score":0.9618,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/arc-routing","display_name":"Arc routing","score":0.83044684},{"id":"https://openalex.org/keywords/heuristics","display_name":"Heuristics","score":0.61790335}],"concepts":[{"id":"https://openalex.org/C2778536092","wikidata":"https://www.wikidata.org/wiki/Q4785038","display_name":"Arc routing","level":3,"score":0.83044684},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6593606},{"id":"https://openalex.org/C127705205","wikidata":"https://www.wikidata.org/wiki/Q5748245","display_name":"Heuristics","level":2,"score":0.61790335},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.5972643},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.5436674},{"id":"https://openalex.org/C175859090","wikidata":"https://www.wikidata.org/wiki/Q322212","display_name":"Travelling salesman problem","level":2,"score":0.49571192},{"id":"https://openalex.org/C52692508","wikidata":"https://www.wikidata.org/wiki/Q1333872","display_name":"Combinatorial optimization","level":2,"score":0.44187057},{"id":"https://openalex.org/C74172769","wikidata":"https://www.wikidata.org/wiki/Q1446839","display_name":"Routing (electronic design automation)","level":2,"score":0.43529028},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.41017866},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37400556},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.28252357},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2255339},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cec.2019.8790295","pdf_url":null,"source":{"id":"https://openalex.org/S4363605353","display_name":"2022 IEEE Congress on Evolutionary Computation (CEC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.43,"display_name":"Decent work and economic growth","id":"https://metadata.un.org/sdg/8"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1533861849","https://openalex.org/W1597286183","https://openalex.org/W2051719061","https://openalex.org/W2074485628","https://openalex.org/W2081814459","https://openalex.org/W2119717200","https://openalex.org/W2126141749","https://openalex.org/W2130942839","https://openalex.org/W2145339207","https://openalex.org/W2155027007","https://openalex.org/W2155262811","https://openalex.org/W2157331557","https://openalex.org/W2169528473","https://openalex.org/W2194775991","https://openalex.org/W2299115575","https://openalex.org/W2490561050","https://openalex.org/W2507756961","https://openalex.org/W2607264901","https://openalex.org/W2899771611","https://openalex.org/W2952332632","https://openalex.org/W2962979969","https://openalex.org/W2963403868","https://openalex.org/W2963716836","https://openalex.org/W2964121744","https://openalex.org/W2964321699","https://openalex.org/W4295138992","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4281906162","https://openalex.org/W4200388139","https://openalex.org/W2889491356","https://openalex.org/W2140318223","https://openalex.org/W2078941772","https://openalex.org/W2077144156","https://openalex.org/W2061233155","https://openalex.org/W2042986967","https://openalex.org/W2033664275","https://openalex.org/W2017372614"],"abstract_inverted_index":{"Most":[0],"heuristic":[1,16,137],"algorithms":[2],"for":[3,30,66],"NP-hard":[4],"combinatorial":[5,31],"optimization":[6,32],"problems":[7,33,39],"require":[8],"expertise":[9],"in":[10],"both":[11],"the":[12,67,98,106,108,112,120],"problem":[13],"domains":[14],"and":[15,48,92],"methods.":[17],"Recent":[18],"research":[19],"has":[20],"begun":[21],"to":[22,27,125],"apply":[23],"Deep":[24],"Neural":[25],"Network":[26,91],"learning":[28,63],"heuristics":[29],"automatically.":[34],"These":[35],"works":[36],"mainly":[37],"focus":[38],"with":[40,114,132],"simple":[41],"formulations,":[42],"such":[43],"as":[44,105],"Travelling":[45],"Salesman":[46],"Problem":[47,51,71],"Vehicle":[49],"Routing":[50,70],"defined":[52,74],"on":[53,75],"Euclidean":[54],"graphs.":[55,80],"This":[56],"paper":[57],"presents":[58],"a":[59,85,88],"novel":[60],"deep":[61],"reinforcement":[62],"based":[64],"algorithm":[65],"Capacitated":[68],"Arc":[69],"which":[72],"is":[73,84,123],"more":[76],"complex":[77],"non-Euclidean":[78],"information":[79],"The":[81],"proposed":[82,109,121],"approach":[83],"combination":[86],"of":[87,102],"Graph":[89],"Convolutional":[90],"two":[93],"encoder-decoder":[94],"models.":[95],"By":[96],"regrading":[97],"negative":[99],"objective":[100],"values":[101],"CARP":[103],"instances":[104],"rewards,":[107],"method":[110,122],"optimizes":[111],"parameters":[113],"REINFORCE":[115],"algorithm.":[116],"In":[117],"empirical":[118],"experiments,":[119],"able":[124],"generate":[126],"solutions":[127,130],"approximate":[128],"optimal":[129],"well":[131],"much":[133],"less":[134],"time":[135],"than":[136],"algorithms.":[138]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2969185746","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":2}],"updated_date":"2025-03-21T08:24:58.080403","created_date":"2019-08-22"}