{"id":"https://openalex.org/W1539214632","doi":"https://doi.org/10.1109/cec.2015.7256977","title":"A math-hyper-heuristic approach for large-scale vehicle routing problems with time windows","display_name":"A math-hyper-heuristic approach for large-scale vehicle routing problems with time windows","publication_year":2015,"publication_date":"2015-05-01","ids":{"openalex":"https://openalex.org/W1539214632","doi":"https://doi.org/10.1109/cec.2015.7256977","mag":"1539214632"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cec.2015.7256977","pdf_url":null,"source":{"id":"https://openalex.org/S4363605353","display_name":"2022 IEEE Congress on Evolutionary Computation (CEC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5050621611","display_name":"Nasser R. Sabar","orcid":"https://orcid.org/0000-0002-0276-4704"},"institutions":[{"id":"https://openalex.org/I155043079","display_name":"University of Nottingham Malaysia Campus","ror":"https://ror.org/04mz9mt17","country_code":"MY","type":"education","lineage":["https://openalex.org/I142263535","https://openalex.org/I155043079"]}],"countries":["MY"],"is_corresponding":false,"raw_author_name":"Nasser R. Sabar","raw_affiliation_strings":["The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia."],"affiliations":[{"raw_affiliation_string":"The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.","institution_ids":["https://openalex.org/I155043079"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015024772","display_name":"Xiuzhen Jenny Zhang","orcid":null},"institutions":[{"id":"https://openalex.org/I82951845","display_name":"RMIT University","ror":"https://ror.org/04ttjf776","country_code":"AU","type":"education","lineage":["https://openalex.org/I82951845"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Xiuzhen Jenny Zhang","raw_affiliation_strings":["The School of Computer Science and Information Technology, RMIT University, Australia#TAB#"],"affiliations":[{"raw_affiliation_string":"The School of Computer Science and Information Technology, RMIT University, Australia#TAB#","institution_ids":["https://openalex.org/I82951845"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5056403144","display_name":"Andy Song","orcid":"https://orcid.org/0000-0002-7579-7048"},"institutions":[{"id":"https://openalex.org/I82951845","display_name":"RMIT University","ror":"https://ror.org/04ttjf776","country_code":"AU","type":"education","lineage":["https://openalex.org/I82951845"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Andy Song","raw_affiliation_strings":["The School of Computer Science and Information Technology, RMIT University, Australia#TAB#"],"affiliations":[{"raw_affiliation_string":"The School of Computer Science and Information Technology, RMIT University, Australia#TAB#","institution_ids":["https://openalex.org/I82951845"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.248,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":23,"citation_normalized_percentile":{"value":0.974478,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":null,"issue":null,"first_page":"830","last_page":"837"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10567","display_name":"Vehicle Routing Optimization Methods","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10567","display_name":"Vehicle Routing Optimization Methods","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11942","display_name":"Transportation and Mobility Innovations","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10586","display_name":"Robotic Path Planning Algorithms","score":0.9892,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/vehicle-routing-problem","display_name":"Vehicle Routing Problem","score":0.8307196},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.777318},{"id":"https://openalex.org/keywords/column-generation","display_name":"Column generation","score":0.64057636}],"concepts":[{"id":"https://openalex.org/C123784306","wikidata":"https://www.wikidata.org/wiki/Q944041","display_name":"Vehicle routing problem","level":3,"score":0.8307196},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.7895717},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.777318},{"id":"https://openalex.org/C168956720","wikidata":"https://www.wikidata.org/wiki/Q3123181","display_name":"Column generation","level":2,"score":0.64057636},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.6398321},{"id":"https://openalex.org/C74172769","wikidata":"https://www.wikidata.org/wiki/Q1446839","display_name":"Routing (electronic design automation)","level":2,"score":0.5785428},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5564066},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5303591},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.5178993},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33876127},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3271231},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cec.2015.7256977","pdf_url":null,"source":{"id":"https://openalex.org/S4363605353","display_name":"2022 IEEE Congress on Evolutionary Computation (CEC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure","score":0.4}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W1549203705","https://openalex.org/W1561239738","https://openalex.org/W1562854602","https://openalex.org/W1814515812","https://openalex.org/W1984776279","https://openalex.org/W1989380511","https://openalex.org/W2013847728","https://openalex.org/W2018743970","https://openalex.org/W2028630422","https://openalex.org/W2029681015","https://openalex.org/W2035874923","https://openalex.org/W2042139155","https://openalex.org/W2059283642","https://openalex.org/W2059760003","https://openalex.org/W2066086285","https://openalex.org/W2067503240","https://openalex.org/W2083777413","https://openalex.org/W2090619991","https://openalex.org/W2093952957","https://openalex.org/W2100936956","https://openalex.org/W2111563176","https://openalex.org/W2116675171","https://openalex.org/W2126148517","https://openalex.org/W2129021445","https://openalex.org/W2163206542","https://openalex.org/W2168210873","https://openalex.org/W2181822232","https://openalex.org/W2358128336","https://openalex.org/W3147369624","https://openalex.org/W4241051765","https://openalex.org/W783967913"],"related_works":["https://openalex.org/W3089606439","https://openalex.org/W3037553096","https://openalex.org/W2595691866","https://openalex.org/W2499699449","https://openalex.org/W2333308323","https://openalex.org/W2158354221","https://openalex.org/W2117466569","https://openalex.org/W2040678783","https://openalex.org/W2017649536","https://openalex.org/W1990067406"],"abstract_inverted_index":{"Vehicle":[0],"routing":[1,117],"is":[2,20,85,162],"known":[3],"as":[4,44],"the":[5,13,40,80,83,94,109,129,132,137,149,159],"most":[6],"challenging":[7],"but":[8],"an":[9],"important":[10],"problem":[11,41,59,84],"in":[12,143],"transportation":[14],"and":[15,62,75,105],"logistics":[16],"filed.":[17],"The":[18,65,98,126,155],"task":[19],"to":[21,28,56],"optimise":[22],"a":[23,30,53,72,76],"set":[24],"of":[25,32,69,114,131,148,158,167],"vehicle":[26,116],"routes":[27],"serve":[29],"group":[31],"customers":[33],"with":[34,119,145],"minimal":[35],"delivery":[36],"cost":[37,157],"while":[38],"respecting":[39],"constraints":[42],"such":[43],"arriving":[45],"within":[46],"given":[47],"time":[48,120],"windows.":[49],"This":[50],"study":[51],"presented":[52],"math-hyper-heuristic":[54],"approach":[55,67],"tackle":[57],"this":[58],"more":[60,63],"effectively":[61],"efficiently.":[64],"proposed":[66,138,160],"consists":[68],"two":[70,146],"phases:":[71],"math":[73,81,133],"phase":[74],"hyper-heuristic":[77,110],"phase.":[78,111,134],"In":[79],"phase,":[82],"decomposed":[86],"into":[87],"sub-problems":[88,102],"which":[89],"are":[90,103],"solved":[91],"independently":[92],"using":[93],"column":[95],"generation":[96],"algorithm.":[97],"solutions":[99,142],"for":[100,124],"these":[101],"combined":[104],"then":[106],"improved":[107],"by":[108],"Benchmark":[112],"instances":[113],"large-scale":[115],"problems":[118],"windows":[121],"were":[122],"used":[123],"evaluation.":[125],"results":[127],"show":[128],"effectiveness":[130],"More":[135],"importantly":[136],"method":[139,161],"achieved":[140],"better":[141],"comparison":[144],"state":[147],"art":[150],"methods":[151],"on":[152],"all":[153],"instances.":[154],"computational":[156],"also":[163],"lower":[164],"than":[165],"that":[166],"other":[168],"methods.":[169]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1539214632","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":6},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":3},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":1}],"updated_date":"2025-01-08T22:27:07.850390","created_date":"2016-06-24"}