{"id":"https://openalex.org/W2117097643","doi":"https://doi.org/10.1109/cec.2008.4630969","title":"Morphological-Rank-Linear Time-lag Added Evolutionary Forecasting method for financial time series forecasting","display_name":"Morphological-Rank-Linear Time-lag Added Evolutionary Forecasting method for financial time series forecasting","publication_year":2008,"publication_date":"2008-06-01","ids":{"openalex":"https://openalex.org/W2117097643","doi":"https://doi.org/10.1109/cec.2008.4630969","mag":"2117097643"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cec.2008.4630969","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5010756335","display_name":"Ricardo de A. Ara\u00fajo","orcid":"https://orcid.org/0000-0001-6175-4250"},"institutions":[{"id":"https://openalex.org/I71437568","display_name":"Universidade de Pernambuco","ror":"https://ror.org/00gtcbp88","country_code":"BR","type":"education","lineage":["https://openalex.org/I71437568"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Ricardo de A. Araujo","raw_affiliation_strings":["Center for Inf., Fed. Univ. of Pernambuco, Recife"],"affiliations":[{"raw_affiliation_string":"Center for Inf., Fed. Univ. of Pernambuco, Recife","institution_ids":["https://openalex.org/I71437568"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111910805","display_name":"Aranildo R.L.","orcid":null},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Aranildo R.L.","raw_affiliation_strings":["Department of Physics, Federal University of Pernambuco, Recife, PE, Brazil."],"affiliations":[{"raw_affiliation_string":"Department of Physics, Federal University of Pernambuco, Recife, PE, Brazil.","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5035227367","display_name":"Tiago A. E. Ferreira","orcid":"https://orcid.org/0000-0002-2131-9825"},"institutions":[{"id":"https://openalex.org/I62921916","display_name":"Universidade Federal Rural de Pernambuco","ror":"https://ror.org/02ksmb993","country_code":"BR","type":"education","lineage":["https://openalex.org/I62921916"]},{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Tiago A.E. Ferreira","raw_affiliation_strings":["Statistics and Informatics Department, Rural Federal University of Pernambuco, Recife, PE, Brazil"],"affiliations":[{"raw_affiliation_string":"Statistics and Informatics Department, Rural Federal University of Pernambuco, Recife, PE, Brazil","institution_ids":["https://openalex.org/I62921916","https://openalex.org/I25112270"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.072,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":7,"citation_normalized_percentile":{"value":0.707619,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"1340","last_page":"1347"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9901,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10100","display_name":"Metaheuristic Optimization Algorithms Research","score":0.9772,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.5081048},{"id":"https://openalex.org/keywords/finite-impulse-response","display_name":"Finite impulse response","score":0.48498583},{"id":"https://openalex.org/keywords/perceptron","display_name":"Perceptron","score":0.48203385},{"id":"https://openalex.org/keywords/multilayer-perceptron","display_name":"Multilayer perceptron","score":0.43583658}],"concepts":[{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.52884185},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.51628035},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.50818086},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.5081048},{"id":"https://openalex.org/C198386975","wikidata":"https://www.wikidata.org/wiki/Q117785","display_name":"Finite impulse response","level":2,"score":0.48498583},{"id":"https://openalex.org/C60908668","wikidata":"https://www.wikidata.org/wiki/Q690207","display_name":"Perceptron","level":3,"score":0.48203385},{"id":"https://openalex.org/C159149176","wikidata":"https://www.wikidata.org/wiki/Q14489129","display_name":"Evolutionary algorithm","level":2,"score":0.47911978},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.46591333},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.46119666},{"id":"https://openalex.org/C8880873","wikidata":"https://www.wikidata.org/wiki/Q187787","display_name":"Genetic algorithm","level":2,"score":0.44258827},{"id":"https://openalex.org/C179717631","wikidata":"https://www.wikidata.org/wiki/Q2991667","display_name":"Multilayer perceptron","level":3,"score":0.43583658},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.43464196},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.41149974},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.36931264},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.32506257},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.31923395},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.24625322},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cec.2008.4630969","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/8","display_name":"Decent work and economic growth","score":0.53}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W1509168122","https://openalex.org/W1549386224","https://openalex.org/W1586335931","https://openalex.org/W1978555977","https://openalex.org/W1991261837","https://openalex.org/W2026777449","https://openalex.org/W2029903684","https://openalex.org/W2108604074","https://openalex.org/W2119962874","https://openalex.org/W2153720810","https://openalex.org/W2155482699","https://openalex.org/W2163910600","https://openalex.org/W2164741953","https://openalex.org/W3015379812","https://openalex.org/W3121350493","https://openalex.org/W3207342693","https://openalex.org/W4249333974","https://openalex.org/W4301015177"],"related_works":["https://openalex.org/W89844371","https://openalex.org/W4387048144","https://openalex.org/W4286643620","https://openalex.org/W4280646145","https://openalex.org/W2523437662","https://openalex.org/W2492135063","https://openalex.org/W2362514456","https://openalex.org/W2085842814","https://openalex.org/W2076543106","https://openalex.org/W2019891950"],"abstract_inverted_index":{"This":[0],"paper":[1],"proposes":[2],"the":[3,22,72,83,88,93,97,101,104,107,116,119,128,134,144,147,152,155,160,177,195,215,227],"Morphological-Rank-Linear":[4,46],"Time-lag":[5],"Added":[6,231],"Evolutionary":[7,232],"Forecasting":[8,233],"(MRLTAEF)":[9],"method":[10,158,198],"for":[11,21,71,165],"financial":[12,188,203],"time":[13,27,34,74,84,166,182,189,204],"series":[14,85,167,205],"forecasting,":[15],"which":[16,56],"performs":[17,171],"an":[18,39],"evolutionary":[19],"search":[20,66],"minimum":[23],"number":[24],"of":[25,38,44,77,82,92,106,118,127,146,210],"relevant":[26,211],"lags":[28,75],"necessary":[29],"to":[30,63,141,179,207,219],"efficiently":[31],"represent":[32],"complex":[33],"series.":[35,190],"It":[36],"consists":[37],"intelligent":[40],"hybrid":[41],"model":[42,164],"composed":[43],"a":[45,51,78,172,208],"(MRL)":[47],"filter":[48,95,113,122,149],"combined":[49],"with":[50,194],"Modified":[52],"Genetic":[53],"Algorithm":[54],"(MGA)":[55],"employs":[57],"optimal":[58],"genetic":[59],"operators":[60],"in":[61,176,187],"order":[62],"accelerate":[64],"its":[65],"convergence.":[67],"The":[68],"MGA":[69,129],"searches":[70],"particular":[73],"capable":[76],"fine":[79],"tuned":[80,162],"characterization":[81],"and":[86,115,214,226],"estimates":[87],"initial":[89],"(sub-optimal)":[90],"parameters":[91,145],"MRL":[94,148,224],"-":[96],"mixing":[98],"parameter":[99],"(lambda),":[100],"rank":[102],"(r),":[103],"coefficients":[105,117],"linear":[108],"Finite":[109],"Impulse":[110],"Response":[111],"(FIR)":[112],"(b)":[114],"Morphological-Rank":[120],"(MR)":[121],"(a).":[123],"Thus,":[124],"each":[125],"individual":[126],"population":[130],"is":[131],"trained":[132],"by":[133,151],"averaged":[135],"Least":[136],"Mean":[137],"Squares":[138],"(LMS)":[139],"algorithm":[140],"further":[142],"improve":[143],"supplied":[150],"MGA.":[153],"Initially,":[154],"proposed":[156,196],"MRLTAEF":[157,197],"chooses":[159],"most":[161],"prediction":[163],"representation,":[168],"thus":[169],"it":[170],"behavioral":[173],"statistical":[174],"test":[175],"attempt":[178],"adjust":[180],"forecasting":[181],"phase":[183],"distortions":[184],"that":[185],"appear":[186],"Experiments":[191],"are":[192,217],"conducted":[193],"using":[199],"three":[200],"real":[201],"world":[202],"according":[206],"group":[209],"performance":[212],"metrics":[213],"results":[216],"compared":[218],"MultiLayer":[220],"Perceptron":[221],"(MLP)":[222],"networks,":[223],"filters":[225],"previously":[228],"introduced":[229],"Time-delay":[230],"(TAEF)":[234],"method.":[235]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2117097643","counts_by_year":[{"year":2017,"cited_by_count":1},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":1}],"updated_date":"2024-12-15T17:33:57.255360","created_date":"2016-06-24"}