{"id":"https://openalex.org/W2029375140","doi":"https://doi.org/10.1109/cdc.2011.6161415","title":"Sparse factor analysis via likelihood and ℓ<inf>1</inf>-regularization","display_name":"Sparse factor analysis via likelihood and ℓ<inf>1</inf>-regularization","publication_year":2011,"publication_date":"2011-12-01","ids":{"openalex":"https://openalex.org/W2029375140","doi":"https://doi.org/10.1109/cdc.2011.6161415","mag":"2029375140"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cdc.2011.6161415","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004577779","display_name":"Lipeng Ning","orcid":"https://orcid.org/0000-0003-4992-459X"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Lipeng Ning","raw_affiliation_strings":["University Of Minnesota , USA"],"affiliations":[{"raw_affiliation_string":"University Of Minnesota , USA","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5035194316","display_name":"Tryphon T. Georgiou","orcid":"https://orcid.org/0000-0003-0012-5447"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tryphon T. Georgiou","raw_affiliation_strings":["University Of Minnesota , USA"],"affiliations":[{"raw_affiliation_string":"University Of Minnesota , USA","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.598,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":19,"citation_normalized_percentile":{"value":0.895723,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"5188","last_page":"5192"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11236","display_name":"Control Systems and Identification","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.7026847},{"id":"https://openalex.org/keywords/analysis-of-covariance","display_name":"Analysis of covariance","score":0.42423588}],"concepts":[{"id":"https://openalex.org/C178650346","wikidata":"https://www.wikidata.org/wiki/Q201984","display_name":"Covariance","level":2,"score":0.71333647},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.7026847},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.48662457},{"id":"https://openalex.org/C61797465","wikidata":"https://www.wikidata.org/wiki/Q1188986","display_name":"Term (time)","level":2,"score":0.47798365},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.43231732},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.43115962},{"id":"https://openalex.org/C119340705","wikidata":"https://www.wikidata.org/wiki/Q1628597","display_name":"Analysis of covariance","level":2,"score":0.42423588},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.41846785},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.34742728},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.33270472},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2600724},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cdc.2011.6161415","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1975214626","https://openalex.org/W1982334443","https://openalex.org/W1997320786","https://openalex.org/W2031054783","https://openalex.org/W2043440217","https://openalex.org/W2053609837","https://openalex.org/W2066306397","https://openalex.org/W2098290597","https://openalex.org/W2098385363","https://openalex.org/W2099177850","https://openalex.org/W2102762459","https://openalex.org/W2137945018","https://openalex.org/W2138930291","https://openalex.org/W2171853113","https://openalex.org/W2228121084","https://openalex.org/W2314496443","https://openalex.org/W2319105149","https://openalex.org/W2327300041","https://openalex.org/W2567889249","https://openalex.org/W2568295944","https://openalex.org/W3026982857","https://openalex.org/W3123110981","https://openalex.org/W4298387008"],"related_works":["https://openalex.org/W4248848563","https://openalex.org/W4244750876","https://openalex.org/W4238970163","https://openalex.org/W4236328372","https://openalex.org/W2492984665","https://openalex.org/W2383820648","https://openalex.org/W2363838894","https://openalex.org/W2084133194","https://openalex.org/W2072965872","https://openalex.org/W2050664815"],"abstract_inverted_index":{"In":[0],"this":[1],"note":[2],"we":[3],"consider":[4],"the":[5,16,23,43,71,83,86,117],"basic":[6],"problem":[7],"to":[8,26,85],"identify":[9],"linear":[10,72],"relations":[11],"in":[12,59],"noise.":[13,38],"We":[14],"follow":[15],"viewpoint":[17],"of":[18,33,42,70,82,96],"factor":[19,97],"analysis":[20],"(FA)":[21],"where":[22,106,116],"data":[24,115],"is":[25,46,55,101,109],"be":[27,50],"explained":[28],"by":[29,104],"a":[30,76],"small":[31],"number":[32],"independent":[34,37],"factors":[35],"and":[36,111,122],"Thereby":[39],"an":[40,60],"approximation":[41],"sample":[44,87],"covariance":[45],"sought":[47],"which":[48,57],"can":[49],"factored":[51],"accordingly.":[52],"An":[53],"algorithm":[54,90,119],"proposed":[56,118],"weighs":[58],"\u2113":[61],"1":[64],"-regularization":[65],"term":[66,78],"that":[67,79],"induces":[68],"sparsity":[69],"model":[73,84],"(factor)":[74],"against":[75,93],"likelihood":[77],"quantifies":[80],"distance":[81],"covariance.":[88],"The":[89],"compares":[91],"favorably":[92],"standard":[94],"techniques":[95],"analysis.":[98],"Their":[99],"performance":[100],"compared":[102],"first":[103],"simulation,":[105],"ground":[107],"truth":[108],"available,":[110],"then":[112],"on":[113],"stock-market":[114],"gives":[120],"reasonable":[121],"sparser":[123],"models.":[124]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2029375140","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":3},{"year":2016,"cited_by_count":2},{"year":2014,"cited_by_count":3},{"year":2013,"cited_by_count":3},{"year":2012,"cited_by_count":1}],"updated_date":"2024-12-07T20:54:18.226074","created_date":"2016-06-24"}