{"id":"https://openalex.org/W2320981652","doi":"https://doi.org/10.1109/ccnc.2016.7444806","title":"Assessment and visualization of geographically distributed event-related sentiments by mining social networks and news","display_name":"Assessment and visualization of geographically distributed event-related sentiments by mining social networks and news","publication_year":2016,"publication_date":"2016-01-01","ids":{"openalex":"https://openalex.org/W2320981652","doi":"https://doi.org/10.1109/ccnc.2016.7444806","mag":"2320981652"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ccnc.2016.7444806","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5078978043","display_name":"Carmelo Pino","orcid":"https://orcid.org/0000-0003-0726-7851"},"institutions":[{"id":"https://openalex.org/I39063666","display_name":"University of Catania","ror":"https://ror.org/03a64bh57","country_code":"IT","type":"funder","lineage":["https://openalex.org/I39063666"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Carmelo Pino","raw_affiliation_strings":["Department of Electrical, Electronics and Computer Engineering, University of Catania, Catania, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Electrical, Electronics and Computer Engineering, University of Catania, Catania, Italy","institution_ids":["https://openalex.org/I39063666"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008977904","display_name":"Isaak Kavasidis","orcid":"https://orcid.org/0000-0003-4366-5195"},"institutions":[{"id":"https://openalex.org/I39063666","display_name":"University of Catania","ror":"https://ror.org/03a64bh57","country_code":"IT","type":"funder","lineage":["https://openalex.org/I39063666"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Isaak Kavasidis","raw_affiliation_strings":["Department of Electrical, Electronics and Computer Engineering, University of Catania, Catania, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Electrical, Electronics and Computer Engineering, University of Catania, Catania, Italy","institution_ids":["https://openalex.org/I39063666"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5075815307","display_name":"Concetto Spampinato","orcid":"https://orcid.org/0000-0001-6653-2577"},"institutions":[{"id":"https://openalex.org/I39063666","display_name":"University of Catania","ror":"https://ror.org/03a64bh57","country_code":"IT","type":"funder","lineage":["https://openalex.org/I39063666"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Concetto Spampinato","raw_affiliation_strings":["Department of Electrical, Electronics and Computer Engineering, University of Catania, Catania, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Electrical, Electronics and Computer Engineering, University of Catania, Catania, Italy","institution_ids":["https://openalex.org/I39063666"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.218,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.347148,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":73,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"354","last_page":"358"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10799","display_name":"Data Visualization and Analytics","score":0.9929,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/georeference","display_name":"Georeference","score":0.6523779},{"id":"https://openalex.org/keywords/sentiment-analysis","display_name":"Sentiment Analysis","score":0.50099444}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7554085},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.6649354},{"id":"https://openalex.org/C75145180","wikidata":"https://www.wikidata.org/wiki/Q772007","display_name":"Georeference","level":2,"score":0.6523779},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.6403906},{"id":"https://openalex.org/C2779662365","wikidata":"https://www.wikidata.org/wiki/Q5416694","display_name":"Event (particle physics)","level":2,"score":0.55294496},{"id":"https://openalex.org/C36464697","wikidata":"https://www.wikidata.org/wiki/Q451553","display_name":"Visualization","level":2,"score":0.54634696},{"id":"https://openalex.org/C66402592","wikidata":"https://www.wikidata.org/wiki/Q2271421","display_name":"Sentiment analysis","level":2,"score":0.50099444},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.37059593},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.28183663},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.16722012},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.13794258},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C100970517","wikidata":"https://www.wikidata.org/wiki/Q52107","display_name":"Physical geography","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ccnc.2016.7444806","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities","score":0.58}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W107085462","https://openalex.org/W1963759754","https://openalex.org/W1971449496","https://openalex.org/W1988023854","https://openalex.org/W1990776069","https://openalex.org/W2013029404","https://openalex.org/W2017238344","https://openalex.org/W2026810221","https://openalex.org/W2048186117","https://openalex.org/W2082957457","https://openalex.org/W2109267528","https://openalex.org/W2127217276","https://openalex.org/W2137981452","https://openalex.org/W2168376747","https://openalex.org/W2171468534","https://openalex.org/W2317789633","https://openalex.org/W2404480901","https://openalex.org/W2790849829"],"related_works":["https://openalex.org/W4394895745","https://openalex.org/W4394320241","https://openalex.org/W4390608645","https://openalex.org/W4389670513","https://openalex.org/W4247566972","https://openalex.org/W3090563135","https://openalex.org/W2960264696","https://openalex.org/W2619880372","https://openalex.org/W2497432351","https://openalex.org/W2032854667"],"abstract_inverted_index":{"In":[0],"this":[1],"paper":[2],"we":[3],"present":[4],"a":[5,85],"method/tool":[6],"for":[7,67,101],"integrating":[8],"heterogeneous":[9,129],"data,":[10],"assessing":[11],"and":[12,37,55,70,81,104,121,128],"visualizing":[13],"sentiments":[14],"related":[15],"to":[16,51,72,92],"big":[17],"impact":[18],"events":[19],"in":[20],"geographically":[21],"confined":[22],"populations.":[23],"The":[24,88],"data":[25],"employed":[26],"are":[27,57],"official":[28],"statistical":[29],"information":[30],"provided":[31],"by":[32],"governments,":[33],"news":[34],"web":[35],"sites":[36],"user":[38],"submitted":[39],"georeferenced":[40],"comments":[41,54],"retrieved":[42,53],"from":[43],"various":[44],"social":[45,99],"networks.":[46],"Sentiment":[47],"analysis":[48],"is":[49,90,116],"applied":[50],"the":[52,79,82,108,113],"results":[56],"visualized":[58],"on":[59],"interactive":[60],"maps,":[61],"thus":[62],"providing":[63],"an":[64,123],"effective":[65],"tool":[66],"decision":[68,105],"makers":[69],"analysts":[71],"evaluate":[73],"how":[74],"socioeconomic":[75],"factors":[76],"can":[77],"influence":[78],"mood":[80],"opinion":[83],"of":[84,125],"specific":[86],"area.":[87],"method":[89,115],"designed":[91],"assist":[93],"city":[94],"planners,":[95],"business":[96],"managers":[97],"or":[98],"scientists":[100],"strategic":[102],"planning":[103],"making.":[106],"Furthermore,":[107],"experimental":[109],"evaluation":[110],"showed":[111],"that":[112],"proposed":[114],"robust,":[117],"achieves":[118],"state-of-the-art":[119],"performance":[120],"allows":[122],"easy-exploration":[124],"big,":[126],"distributed":[127],"information.":[130]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2320981652","counts_by_year":[{"year":2019,"cited_by_count":1},{"year":2016,"cited_by_count":1}],"updated_date":"2025-04-19T00:43:40.481272","created_date":"2016-06-24"}