{"id":"https://openalex.org/W2939917263","doi":"https://doi.org/10.1109/ccis.2018.8691373","title":"Manifold Learning for Cross-project Software Defect Prediction","display_name":"Manifold Learning for Cross-project Software Defect Prediction","publication_year":2018,"publication_date":"2018-11-01","ids":{"openalex":"https://openalex.org/W2939917263","doi":"https://doi.org/10.1109/ccis.2018.8691373","mag":"2939917263"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ccis.2018.8691373","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100700549","display_name":"Jing Sun","orcid":"https://orcid.org/0000-0002-7293-9709"},"institutions":[{"id":"https://openalex.org/I41198531","display_name":"Nanjing University of Posts and Telecommunications","ror":"https://ror.org/043bpky34","country_code":"CN","type":"education","lineage":["https://openalex.org/I41198531"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jing Sun","raw_affiliation_strings":["Nanjing University of Posts and Telecommunications, Nanjing 210023, China"],"affiliations":[{"raw_affiliation_string":"Nanjing University of Posts and Telecommunications, Nanjing 210023, China","institution_ids":["https://openalex.org/I41198531"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029691902","display_name":"Xiao\u2010Yuan Jing","orcid":"https://orcid.org/0000-0002-0392-8475"},"institutions":[{"id":"https://openalex.org/I41198531","display_name":"Nanjing University of Posts and Telecommunications","ror":"https://ror.org/043bpky34","country_code":"CN","type":"education","lineage":["https://openalex.org/I41198531"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaoyuan Jing","raw_affiliation_strings":["Nanjing University of Posts and Telecommunications, Nanjing 210023, China"],"affiliations":[{"raw_affiliation_string":"Nanjing University of Posts and Telecommunications, Nanjing 210023, China","institution_ids":["https://openalex.org/I41198531"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5008307487","display_name":"Xiwei Dong","orcid":"https://orcid.org/0000-0001-5013-673X"},"institutions":[{"id":"https://openalex.org/I41198531","display_name":"Nanjing University of Posts and Telecommunications","ror":"https://ror.org/043bpky34","country_code":"CN","type":"education","lineage":["https://openalex.org/I41198531"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiwei Dong","raw_affiliation_strings":["Nanjing University of Posts and Telecommunications, Nanjing 210023, China"],"affiliations":[{"raw_affiliation_string":"Nanjing University of Posts and Telecommunications, Nanjing 210023, China","institution_ids":["https://openalex.org/I41198531"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.301,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.691304,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"567","last_page":"571"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10260","display_name":"Software Engineering Research","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10260","display_name":"Software Engineering Research","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12423","display_name":"Software Reliability and Analysis Research","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1712","display_name":"Software"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12127","display_name":"Software System Performance and Reliability","score":0.9727,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.59970903}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7884308},{"id":"https://openalex.org/C2777904410","wikidata":"https://www.wikidata.org/wiki/Q7397","display_name":"Software","level":2,"score":0.61942273},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.59970903},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5745435},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.5585739},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.52579117},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5198163},{"id":"https://openalex.org/C8038995","wikidata":"https://www.wikidata.org/wiki/Q1152135","display_name":"Unsupervised learning","level":2,"score":0.47023174},{"id":"https://openalex.org/C12362212","wikidata":"https://www.wikidata.org/wiki/Q728435","display_name":"Linear subspace","level":2,"score":0.4354994},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08416599},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ccis.2018.8691373","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.48,"display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W2021688474","https://openalex.org/W2031770898","https://openalex.org/W2037691959","https://openalex.org/W2046830558","https://openalex.org/W2064330644","https://openalex.org/W2065547122","https://openalex.org/W2081801689","https://openalex.org/W2101227285","https://openalex.org/W2105115424","https://openalex.org/W2107298017","https://openalex.org/W2128053425","https://openalex.org/W2149466042","https://openalex.org/W2304692780","https://openalex.org/W2476464413","https://openalex.org/W2793681838"],"related_works":["https://openalex.org/W4289378085","https://openalex.org/W4211228991","https://openalex.org/W3103861421","https://openalex.org/W2949110394","https://openalex.org/W2896134808","https://openalex.org/W2754495451","https://openalex.org/W2391321755","https://openalex.org/W2353790329","https://openalex.org/W2279743781","https://openalex.org/W2071055957"],"abstract_inverted_index":{"Traditional":[0],"software":[1,24,32,76,167],"defect":[2,25,33,77,168],"prediction":[3,26,34,78],"studies":[4,144],"usually":[5],"built":[6],"models":[7,52],"using":[8],"within-project":[9],"data.":[10],"However,":[11],"there":[12],"are":[13,47],"not":[14,54],"enough":[15],"local":[16],"data":[17,61],"repositories":[18],"for":[19],"us":[20],"to":[21,40,57,62,80,123,133],"build":[22],"the":[23,49,82,97,113,157,163,171],"model":[27],"in":[28,145,150,177],"practice.":[29],"Recently,":[30],"cross-project":[31,166],"(CSDP)":[35],"has":[36],"been":[37],"proposed.":[38],"Due":[39],"distributions":[41,86],"of":[42,84,99,109,115,165],"source":[43,88,100,121],"and":[44,90,101,117,152],"target":[45,91,102,124],"domains":[46,103],"different,":[48],"existing":[50],"CSDP":[51],"do":[53],"investigate":[55],"how":[56],"use":[58],"mixed":[59],"project":[60],"predict":[63],"target.":[64],"In":[65],"this":[66,138],"paper,":[67],"we":[68],"propose":[69],"a":[70],"method":[71,95,127,139,159,173],"termed":[72],"geodesic":[73],"flow":[74],"kernel":[75],"(GFKSDP)":[79],"solve":[81],"problem":[83],"different":[85],"between":[87],"domain":[89,122],"domain.":[92,125],"Our":[93,126],"GFKSDP":[94],"shrinks":[96],"differences":[98],"by":[104],"integrating":[105],"an":[106],"infinite":[107],"number":[108],"subspaces":[110],"that":[111,156],"characterize":[112],"changes":[114],"geometric":[116],"statistical":[118],"properties":[119],"from":[120],"can":[128,160],"adaptively":[129],"determine":[130],"significant":[131],"parameters":[132],"reduce":[134],"computational":[135],"complexity.":[136],"Besides,":[137],"does":[140],"better":[141],"than":[142],"traditional":[143],"unsupervised":[146,178],"learning.":[147,179],"Experimental":[148],"results":[149],"AEEEM":[151],"Relink":[153],"datasets":[154],"show":[155],"proposed":[158,172],"effectively":[161],"improve":[162],"performance":[164],"prediction.":[169],"And":[170],"outperforms":[174],"state-of-the-art":[175],"methods":[176]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2939917263","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":2}],"updated_date":"2024-12-11T11:04:08.408523","created_date":"2019-04-25"}