{"id":"https://openalex.org/W2513453419","doi":"https://doi.org/10.1109/cbms.2016.24","title":"Predicting Advanced Prostate Cancer Endpoints from Early Indications via Transductive Semi-Supervised Regression","display_name":"Predicting Advanced Prostate Cancer Endpoints from Early Indications via Transductive Semi-Supervised Regression","publication_year":2016,"publication_date":"2016-06-01","ids":{"openalex":"https://openalex.org/W2513453419","doi":"https://doi.org/10.1109/cbms.2016.24","mag":"2513453419"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cbms.2016.24","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5016894767","display_name":"Faisal M. Khan","orcid":"https://orcid.org/0000-0002-5116-7471"},"institutions":[{"id":"https://openalex.org/I102322142","display_name":"Rutgers, The State University of New Jersey","ror":"https://ror.org/05vt9qd57","country_code":"US","type":"education","lineage":["https://openalex.org/I102322142"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Faisal M. Khan","raw_affiliation_strings":["Department of Computer Science Rutgers, The State University of New Jersey, Piscataway, NJ, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science Rutgers, The State University of New Jersey, Piscataway, NJ, USA","institution_ids":["https://openalex.org/I102322142"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5007025173","display_name":"Casimir A. Kulikowski","orcid":"https://orcid.org/0000-0002-0625-1666"},"institutions":[{"id":"https://openalex.org/I102322142","display_name":"Rutgers, The State University of New Jersey","ror":"https://ror.org/05vt9qd57","country_code":"US","type":"education","lineage":["https://openalex.org/I102322142"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Casimir A. Kulikowski","raw_affiliation_strings":["Department of Computer Science Rutgers, The State University of New Jersey, Piscataway, NJ, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science Rutgers, The State University of New Jersey, Piscataway, NJ, USA","institution_ids":["https://openalex.org/I102322142"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.278,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.468586,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":73,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"19","last_page":"23"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10136","display_name":"Regularization and Variable Selection Methods","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10136","display_name":"Regularization and Variable Selection Methods","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Model-Based Clustering with Mixture Models","score":0.9892,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11235","display_name":"Statistical Methods in Clinical Trials and Drug Development","score":0.9848,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/clinical-endpoint","display_name":"Clinical endpoint","score":0.59358466},{"id":"https://openalex.org/keywords/survival-analysis","display_name":"Survival Analysis","score":0.532628},{"id":"https://openalex.org/keywords/composite-endpoints","display_name":"Composite Endpoints","score":0.509572}],"concepts":[{"id":"https://openalex.org/C2780192828","wikidata":"https://www.wikidata.org/wiki/Q181257","display_name":"Prostate cancer","level":3,"score":0.7842713},{"id":"https://openalex.org/C2779466945","wikidata":"https://www.wikidata.org/wiki/Q1765251","display_name":"Prostatectomy","level":4,"score":0.60550904},{"id":"https://openalex.org/C203092338","wikidata":"https://www.wikidata.org/wiki/Q1340863","display_name":"Clinical endpoint","level":3,"score":0.59358466},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.5644432},{"id":"https://openalex.org/C50382708","wikidata":"https://www.wikidata.org/wiki/Q223218","display_name":"Proportional hazards model","level":2,"score":0.48359698},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4715992},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4652902},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.45829567},{"id":"https://openalex.org/C10515644","wikidata":"https://www.wikidata.org/wiki/Q543310","display_name":"Survival analysis","level":2,"score":0.42366946},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.40423322},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.38240695},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.37705624},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.23534086},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.21225977},{"id":"https://openalex.org/C535046627","wikidata":"https://www.wikidata.org/wiki/Q30612","display_name":"Clinical trial","level":2,"score":0.20338827},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11047059}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cbms.2016.24","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1570622790","https://openalex.org/W16718800","https://openalex.org/W2048386500","https://openalex.org/W2060988092","https://openalex.org/W2108268158","https://openalex.org/W2109269939","https://openalex.org/W2120605054","https://openalex.org/W2129144865","https://openalex.org/W2170938446","https://openalex.org/W3175417087","https://openalex.org/W4384306321"],"related_works":["https://openalex.org/W4380448775","https://openalex.org/W4380269519","https://openalex.org/W4225134093","https://openalex.org/W3136232645","https://openalex.org/W2797301068","https://openalex.org/W2581226876","https://openalex.org/W2026784993","https://openalex.org/W2010631330","https://openalex.org/W2006470775","https://openalex.org/W1554732404"],"abstract_inverted_index":{"Prostate":[0],"cancer":[1,147],"is":[2,15,44,59,80,82],"a":[3,16,20,48,73,83,96,138],"complex":[4],"disease":[5],"which":[6,63,104],"advances":[7],"in":[8,50,56,112,141,156],"stages.":[9,165],"While":[10],"clinical":[11],"failure":[12],"(including":[13],"metastasis)":[14],"significant":[17,139],"endpoint":[18,40],"following":[19],"radical":[21],"prostatectomy,":[22],"it":[23],"can":[24],"often":[25],"take":[26],"years":[27],"to":[28,33,109,137],"manifest,":[29],"usually":[30],"too":[31],"late":[32],"be":[34,110,154],"optimistically":[35],"treated.":[36],"Instead":[37],"the":[38,125,134],"earlier":[39,88,149,164],"of":[41,72,75,128],"PSA":[42],"Recurrence":[43],"frequently":[45],"used":[46],"as":[47,120],"surrogate":[49],"prognostic":[51],"modeling.":[52],"The":[53,68,115],"central":[54],"issue":[55],"these":[57],"models":[58],"managing":[60],"censored":[61,84,118],"observations":[62],"challenge":[64],"traditional":[65],"regression":[66,122],"techniques.":[67],"true":[69],"target":[70,85],"times":[71],"majority":[74],"instances":[76],"are":[77],"unknown,":[78],"what":[79],"known":[81],"representing":[86],"some":[87],"indeterminate":[89],"time.":[90],"In":[91,131],"this":[92,132],"work":[93],"we":[94],"apply":[95],"novel":[97],"transduction":[98],"approach":[99,116,135],"for":[100,143,159],"semi-supervised":[101,121],"survival":[102],"analysis":[103],"has":[105],"previously":[106],"been":[107],"shown":[108],"powerful":[111],"medical":[113],"prognosis.":[114],"considers":[117],"samples":[119],"targets":[123],"leveraging":[124],"partial":[126],"nature":[127],"unsupervised":[129],"information.":[130],"work,":[133],"leads":[136],"increase":[140],"performance":[142],"predicting":[144,160],"advanced":[145,161],"prostate":[146],"from":[148,163],"endpoints":[150,162],"and":[151],"may":[152],"also":[153],"useful":[155],"other":[157],"diseases":[158]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2513453419","counts_by_year":[{"year":2021,"cited_by_count":1},{"year":2016,"cited_by_count":1}],"updated_date":"2024-11-23T17:22:46.040525","created_date":"2016-09-16"}