{"id":"https://openalex.org/W4387123833","doi":"https://doi.org/10.1109/case56687.2023.10260329","title":"Collision-Free Motion Planning for Multiple Robot Arms by Combining Deep Q-Network and Graph Search Algorithm","display_name":"Collision-Free Motion Planning for Multiple Robot Arms by Combining Deep Q-Network and Graph Search Algorithm","publication_year":2023,"publication_date":"2023-08-26","ids":{"openalex":"https://openalex.org/W4387123833","doi":"https://doi.org/10.1109/case56687.2023.10260329"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/case56687.2023.10260329","pdf_url":null,"source":{"id":"https://openalex.org/S4363607892","display_name":"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113010584","display_name":"Kengo Hara","orcid":null},"institutions":[{"id":"https://openalex.org/I163770644","display_name":"Okayama University","ror":"https://ror.org/02pc6pc55","country_code":"JP","type":"education","lineage":["https://openalex.org/I163770644"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Kengo Hara","raw_affiliation_strings":["Graduate School of Environmental, Life, Natural Science and Technology, Okayama University,Okayama,JAPAN,700-8530"],"affiliations":[{"raw_affiliation_string":"Graduate School of Environmental, Life, Natural Science and Technology, Okayama University,Okayama,JAPAN,700-8530","institution_ids":["https://openalex.org/I163770644"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033193171","display_name":"Tatsushi Nishi","orcid":"https://orcid.org/0000-0003-1354-3939"},"institutions":[{"id":"https://openalex.org/I163770644","display_name":"Okayama University","ror":"https://ror.org/02pc6pc55","country_code":"JP","type":"education","lineage":["https://openalex.org/I163770644"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Tatsushi Nishi","raw_affiliation_strings":["Graduate School of Environmental, Life, Natural Science and Technology, Okayama University,Okayama,JAPAN,700-8530"],"affiliations":[{"raw_affiliation_string":"Graduate School of Environmental, Life, Natural Science and Technology, Okayama University,Okayama,JAPAN,700-8530","institution_ids":["https://openalex.org/I163770644"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028291488","display_name":"Ziang Liu","orcid":"https://orcid.org/0000-0002-1364-3502"},"institutions":[{"id":"https://openalex.org/I163770644","display_name":"Okayama University","ror":"https://ror.org/02pc6pc55","country_code":"JP","type":"education","lineage":["https://openalex.org/I163770644"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Ziang Liu","raw_affiliation_strings":["Graduate School of Environmental, Life, Natural Science and Technology, Okayama University,Okayama,JAPAN,700-8530"],"affiliations":[{"raw_affiliation_string":"Graduate School of Environmental, Life, Natural Science and Technology, Okayama University,Okayama,JAPAN,700-8530","institution_ids":["https://openalex.org/I163770644"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5019787002","display_name":"Tomofumi Fujiwara","orcid":null},"institutions":[{"id":"https://openalex.org/I163770644","display_name":"Okayama University","ror":"https://ror.org/02pc6pc55","country_code":"JP","type":"education","lineage":["https://openalex.org/I163770644"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Tomofumi Fujiwara","raw_affiliation_strings":["Graduate School of Environmental, Life, Natural Science and Technology, Okayama University,Okayama,JAPAN,700-8530"],"affiliations":[{"raw_affiliation_string":"Graduate School of Environmental, Life, Natural Science and Technology, Okayama University,Okayama,JAPAN,700-8530","institution_ids":["https://openalex.org/I163770644"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10586","display_name":"Robotic Path Planning Algorithms","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10586","display_name":"Robotic Path Planning Algorithms","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10879","display_name":"Robotic Locomotion and Control","score":0.9845,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C2780864053","wikidata":"https://www.wikidata.org/wiki/Q5147495","display_name":"Collision avoidance","level":3,"score":0.81398296},{"id":"https://openalex.org/C90509273","wikidata":"https://www.wikidata.org/wiki/Q11012","display_name":"Robot","level":2,"score":0.7540206},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6839093},{"id":"https://openalex.org/C121704057","wikidata":"https://www.wikidata.org/wiki/Q352070","display_name":"Collision","level":2,"score":0.6261813},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.61254346},{"id":"https://openalex.org/C81074085","wikidata":"https://www.wikidata.org/wiki/Q366872","display_name":"Motion planning","level":3,"score":0.58222824},{"id":"https://openalex.org/C104114177","wikidata":"https://www.wikidata.org/wiki/Q79782","display_name":"Motion (physics)","level":2,"score":0.5470118},{"id":"https://openalex.org/C13662910","wikidata":"https://www.wikidata.org/wiki/Q193139","display_name":"Trajectory","level":2,"score":0.54348564},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5389763},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.46353626},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.45383835},{"id":"https://openalex.org/C44154836","wikidata":"https://www.wikidata.org/wiki/Q45045","display_name":"Simulation","level":1,"score":0.36464983},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.35662782},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.120766014},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C1276947","wikidata":"https://www.wikidata.org/wiki/Q333","display_name":"Astronomy","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/case56687.2023.10260329","pdf_url":null,"source":{"id":"https://openalex.org/S4363607892","display_name":"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321034","funder_display_name":"New Energy and Industrial Technology Development Organization","award_id":"JPNP20016"}],"datasets":[],"versions":[],"referenced_works_count":9,"referenced_works":["https://openalex.org/W1665214252","https://openalex.org/W178098981","https://openalex.org/W2021118704","https://openalex.org/W2112271657","https://openalex.org/W2145339207","https://openalex.org/W2325140059","https://openalex.org/W2329737487","https://openalex.org/W4238404964","https://openalex.org/W4312426536"],"related_works":["https://openalex.org/W4381746183","https://openalex.org/W4317634134","https://openalex.org/W4310743282","https://openalex.org/W4306904969","https://openalex.org/W3005999311","https://openalex.org/W2981729160","https://openalex.org/W2743212448","https://openalex.org/W2742483371","https://openalex.org/W2340892746","https://openalex.org/W1819938260"],"abstract_inverted_index":{"In":[0,19,62,122],"recent":[1],"years,":[2],"multiple":[3,85,104],"industrial":[4,66],"robots":[5,40,67],"have":[6,70],"been":[7],"introduced":[8],"into":[9],"factories,":[10],"and":[11,68,77,112,157,169],"they":[12],"are":[13],"required":[14,89],"to":[15,21,29,57,90,146],"perform":[16],"complex":[17],"tasks.":[18],"order":[20],"improve":[22],"work":[23],"efficiency,":[24],"it":[25,143],"is":[26,88,115,144,154],"also":[27],"important":[28],"generate":[30],"a":[31,35,78,98,108,127,177],"collision-free":[32],"trajectory":[33],"in":[34,46,74,185],"limited":[36],"space":[37],"where":[38,151,188],"the":[39,47,52,75,118,149,152,163,166,170,179,186,189],"interfere":[41],"with":[42,148],"each":[43],"other.":[44],"However,":[45],"actual":[48],"collision":[49,79,128],"avoidance":[50,80,101,129],"motion,":[51],"robot":[53,86,105],"may":[54],"collide":[55],"due":[56],"motion":[58,81,130],"delay":[59],"or":[60],"disturbances.":[61],"particular,":[63],"collisions":[64],"between":[65],"humans":[69],"caused":[71],"fatal":[72],"accidents":[73],"past,":[76],"planning":[82,131],"method":[83,102,132,168,172,181,191],"for":[84,103],"arms":[87,106],"avoid":[91,194],"such":[92],"accidents.":[93],"Previous":[94],"research":[95],"has":[96],"achieved":[97],"real":[99],"time":[100],"using":[107,133,141],"graph":[109],"search":[110],"algorithm":[111],"Q-learning":[113],"which":[114],"one":[116],"of":[117,138,165],"reinforcement":[119],"learning":[120],"method.":[121],"this":[123],"paper,":[124],"we":[125],"propose":[126],"DQN":[134],"(Deep":[135],"Q-Network)":[136],"instead":[137],"Q-learning.":[139],"By":[140],"DQN,":[142],"possible":[145],"deal":[147],"case":[150],"input":[153],"an":[155],"image":[156],"continuous":[158],"state":[159],"space.":[160],"We":[161],"compare":[162],"performance":[164],"proposed":[167,180],"conventional":[171,190],"by":[173],"simulation":[174],"experiments.":[175],"As":[176],"result,":[178],"shows":[182],"its":[183],"usefulness":[184],"cases":[187],"could":[192],"not":[193],"collisions.":[195]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387123833","counts_by_year":[],"updated_date":"2025-01-23T02:59:09.101171","created_date":"2023-09-29"}