{"id":"https://openalex.org/W2583774357","doi":"https://doi.org/10.1109/bracis.2016.090","title":"On Validation Setup for Multiclass Imbalanced Data Sets","display_name":"On Validation Setup for Multiclass Imbalanced Data Sets","publication_year":2016,"publication_date":"2016-10-01","ids":{"openalex":"https://openalex.org/W2583774357","doi":"https://doi.org/10.1109/bracis.2016.090","mag":"2583774357"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bracis.2016.090","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5061650639","display_name":"Evandro J. R. Silva","orcid":null},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Evandro J.R. Silva","raw_affiliation_strings":["Centro de Inform\u00e1tica - CIn, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica - CIn, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5086345001","display_name":"Cleber Zanchettin","orcid":"https://orcid.org/0000-0001-6421-9747"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Cleber Zanchettin","raw_affiliation_strings":["Centro de Inform\u00e1tica - CIn, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica - CIn, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil","institution_ids":["https://openalex.org/I25112270"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.361412,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":73,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"468","last_page":"473"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9913,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/cross-validation","display_name":"Cross-validation","score":0.6822124},{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.4299711},{"id":"https://openalex.org/keywords/model-validation","display_name":"Model Validation","score":0.4194445}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7044259},{"id":"https://openalex.org/C27181475","wikidata":"https://www.wikidata.org/wiki/Q541014","display_name":"Cross-validation","level":2,"score":0.6822124},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.654788},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5344991},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.50732464},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.4299711},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42036813},{"id":"https://openalex.org/C3019813237","wikidata":"https://www.wikidata.org/wiki/Q65089264","display_name":"Model validation","level":2,"score":0.4194445},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3879555},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bracis.2016.090","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W102369970","https://openalex.org/W1480663908","https://openalex.org/W1514907448","https://openalex.org/W1575103269","https://openalex.org/W1680392829","https://openalex.org/W1912982817","https://openalex.org/W1941659294","https://openalex.org/W2019575783","https://openalex.org/W2024223694","https://openalex.org/W2053724458","https://openalex.org/W2073792037","https://openalex.org/W2074932800","https://openalex.org/W2085575316","https://openalex.org/W2100697007","https://openalex.org/W2116925234","https://openalex.org/W2127314075","https://openalex.org/W2146194630","https://openalex.org/W2164341120","https://openalex.org/W2244476846","https://openalex.org/W2330820318","https://openalex.org/W2397803656","https://openalex.org/W3085162807","https://openalex.org/W4210551050"],"related_works":["https://openalex.org/W816105089","https://openalex.org/W4318240167","https://openalex.org/W4254524906","https://openalex.org/W4253742790","https://openalex.org/W3207949591","https://openalex.org/W3048572280","https://openalex.org/W3011444647","https://openalex.org/W2514173981","https://openalex.org/W2100523380","https://openalex.org/W2048917867"],"abstract_inverted_index":{"The":[0],"validation":[1,31,49],"of":[2,28,99],"experiments":[3],"is":[4,110],"commonly":[5],"evaluated":[6],"with":[7,58],"Cross-Validation":[8],"methods.":[9,22],"In":[10,43,96],"the":[11,13,19,39,46,74,83,87,93,97,106,111],"literature":[12],"10-fold,":[14,69,88],"followed":[15,70,89],"by":[16,71,90],"bootstrap,":[17,91],"are":[18,73,92],"most":[20,47,107],"indicated":[21,75,94,108],"However":[23],"there":[24],"lacks":[25],"a":[26,29,59,79,103],"study":[27],"proper":[30],"procedure":[32],"for":[33,38],"imbalanced":[34,55],"data":[35,56,104],"sets,":[36,57],"specially":[37],"rare":[40,100],"class":[41],"case.":[42],"this":[44],"work":[45],"used":[48],"methods":[50,76],"were":[51],"tested":[52],"in":[53,102],"ten":[54],"generic":[60,80],"and":[61],"an":[62],"ad":[63,84],"hoc":[64,85],"classifiers.":[65],"Analyses":[66],"showed":[67],"that":[68],"hold-out,":[72],"when":[77],"using":[78],"classifier.":[81],"For":[82],"classifier":[86],"ones.":[95],"case":[98],"classes":[101],"set,":[105],"method":[109],"repeated":[112],"hold-out.":[113]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2583774357","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2020,"cited_by_count":1}],"updated_date":"2024-12-13T00:48:48.742602","created_date":"2017-02-10"}