{"id":"https://openalex.org/W3007930867","doi":"https://doi.org/10.1109/bigdata47090.2019.9006513","title":"Benchmarking Discretisation Level of Continuous Attributes: Theoretical and Experimental Approaches","display_name":"Benchmarking Discretisation Level of Continuous Attributes: Theoretical and Experimental Approaches","publication_year":2019,"publication_date":"2019-12-01","ids":{"openalex":"https://openalex.org/W3007930867","doi":"https://doi.org/10.1109/bigdata47090.2019.9006513","mag":"3007930867"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bigdata47090.2019.9006513","pdf_url":null,"source":{"id":"https://openalex.org/S4363607718","display_name":"2021 IEEE International Conference on Big Data (Big Data)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://mdsoar.org/bitstreams/98101e41-592b-4b98-b31c-cf1d137145fe/download","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5046558187","display_name":"Wanghu Chen","orcid":"https://orcid.org/0000-0002-9233-7609"},"institutions":[{"id":"https://openalex.org/I68986083","display_name":"Northwest Normal University","ror":"https://ror.org/00gx3j908","country_code":"CN","type":"education","lineage":["https://openalex.org/I68986083"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wanghu Chen","raw_affiliation_strings":["College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China","institution_ids":["https://openalex.org/I68986083"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100407035","display_name":"Chao Wang","orcid":"https://orcid.org/0000-0002-7427-793X"},"institutions":[{"id":"https://openalex.org/I68986083","display_name":"Northwest Normal University","ror":"https://ror.org/00gx3j908","country_code":"CN","type":"education","lineage":["https://openalex.org/I68986083"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chao Wang","raw_affiliation_strings":["College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China","institution_ids":["https://openalex.org/I68986083"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100336998","display_name":"Jing Li","orcid":"https://orcid.org/0000-0002-8044-2284"},"institutions":[{"id":"https://openalex.org/I68986083","display_name":"Northwest Normal University","ror":"https://ror.org/00gx3j908","country_code":"CN","type":"education","lineage":["https://openalex.org/I68986083"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jing Li","raw_affiliation_strings":["College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China","institution_ids":["https://openalex.org/I68986083"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002948518","display_name":"Bo Yang","orcid":"https://orcid.org/0000-0001-5086-7372"},"institutions":[{"id":"https://openalex.org/I68986083","display_name":"Northwest Normal University","ror":"https://ror.org/00gx3j908","country_code":"CN","type":"education","lineage":["https://openalex.org/I68986083"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bo Yang","raw_affiliation_strings":["College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China","institution_ids":["https://openalex.org/I68986083"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001823198","display_name":"Yang Liu","orcid":"https://orcid.org/0000-0001-8956-8214"},"institutions":[{"id":"https://openalex.org/I68986083","display_name":"Northwest Normal University","ror":"https://ror.org/00gx3j908","country_code":"CN","type":"education","lineage":["https://openalex.org/I68986083"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yang Liu","raw_affiliation_strings":["College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China","institution_ids":["https://openalex.org/I68986083"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101750217","display_name":"Jianwu Wang","orcid":"https://orcid.org/0000-0002-9933-1170"},"institutions":[{"id":"https://openalex.org/I79272384","display_name":"University of Maryland, Baltimore County","ror":"https://ror.org/02qskvh78","country_code":"US","type":"education","lineage":["https://openalex.org/I79272384"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jianwu Wang","raw_affiliation_strings":["Department of Information Systems, University of Maryland, Baltimore County, Baltimore, MD, U.S.A."],"affiliations":[{"raw_affiliation_string":"Department of Information Systems, University of Maryland, Baltimore County, Baltimore, MD, U.S.A.","institution_ids":["https://openalex.org/I79272384"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":"3623","last_page":"3631"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11063","display_name":"Rough Sets and Fuzzy Logic","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/categorical-variable","display_name":"Categorical variable","score":0.75271547},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6250439},{"id":"https://openalex.org/keywords/benchmarking","display_name":"Benchmarking","score":0.52496976}],"concepts":[{"id":"https://openalex.org/C73000952","wikidata":"https://www.wikidata.org/wiki/Q17007827","display_name":"Discretization","level":2,"score":0.9327878},{"id":"https://openalex.org/C5274069","wikidata":"https://www.wikidata.org/wiki/Q2285707","display_name":"Categorical variable","level":2,"score":0.75271547},{"id":"https://openalex.org/C105427703","wikidata":"https://www.wikidata.org/wiki/Q665193","display_name":"Discretization of continuous features","level":4,"score":0.67466617},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6250439},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6244935},{"id":"https://openalex.org/C86251818","wikidata":"https://www.wikidata.org/wiki/Q816754","display_name":"Benchmarking","level":2,"score":0.52496976},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.49887753},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.46124262},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.42574605},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39805952},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3419294},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.3323472},{"id":"https://openalex.org/C126148662","wikidata":"https://www.wikidata.org/wiki/Q3890355","display_name":"Discretization error","level":3,"score":0.15872473},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C162853370","wikidata":"https://www.wikidata.org/wiki/Q39809","display_name":"Marketing","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bigdata47090.2019.9006513","pdf_url":null,"source":{"id":"https://openalex.org/S4363607718","display_name":"2021 IEEE International Conference on Big Data (Big Data)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://hdl.handle.net/11603/31609","pdf_url":"https://mdsoar.org/bitstreams/98101e41-592b-4b98-b31c-cf1d137145fe/download","source":{"id":"https://openalex.org/S4306402556","display_name":"Maryland Shared Open Access Repository (USMAI Consortium)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://hdl.handle.net/11603/31609","pdf_url":"https://mdsoar.org/bitstreams/98101e41-592b-4b98-b31c-cf1d137145fe/download","source":{"id":"https://openalex.org/S4306402556","display_name":"Maryland Shared Open Access Repository (USMAI Consortium)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1513366687","https://openalex.org/W1530010412","https://openalex.org/W1597910678","https://openalex.org/W1759972030","https://openalex.org/W1973315244","https://openalex.org/W2056511412","https://openalex.org/W2063673099","https://openalex.org/W2079145130","https://openalex.org/W2091886223","https://openalex.org/W2097994458","https://openalex.org/W2113001205","https://openalex.org/W2118236796","https://openalex.org/W2135511047","https://openalex.org/W2142827986","https://openalex.org/W2160671582","https://openalex.org/W2170595610","https://openalex.org/W2173440868","https://openalex.org/W2191619632","https://openalex.org/W2523236392","https://openalex.org/W2600503224","https://openalex.org/W2669605929"],"related_works":["https://openalex.org/W3135322664","https://openalex.org/W2799209613","https://openalex.org/W2383105441","https://openalex.org/W2378829248","https://openalex.org/W2370926798","https://openalex.org/W2357904669","https://openalex.org/W2340621450","https://openalex.org/W2005929752","https://openalex.org/W1864774435","https://openalex.org/W1492103595"],"abstract_inverted_index":{"The":[0,22],"discretisation":[1,33,51,60,79,87,108,119,170,179,195,223],"of":[2,15,24,35,97,130,168,181,206,224],"an":[3],"attribute":[4,100,184],"refers":[5],"to":[6,75,94,104,215,221],"partitioning":[7],"its":[8,106],"continuous":[9,37,99,146,183,225],"numerical":[10],"values":[11],"into":[12],"intervals,":[13],"each":[14,182],"which":[16,136],"is":[17,29,73,121,137,185],"associated":[18],"a":[19,98,102,169],"categorical":[20,27],"label.":[21],"amount":[23],"such":[25],"different":[26],"labels":[28],"called":[30],"as":[31,101],"target":[32,78,107,178,194],"level":[34,80,109,180,196],"the":[36,50,56,59,64,77,82,86,111,143,152,166,177,188,193,198,204,207,219,222],"attribute.":[38],"For":[39],"data":[40,66,132],"mining":[41],"algorithms":[42],"that":[43,165],"can":[44,61,211],"only":[45],"work":[46],"on":[47,142,151,157],"discrete":[48],"data,":[49],"will":[52,172],"be":[53,173],"necessary.":[54],"At":[55],"same":[57],"time,":[58],"also":[62,122],"make":[63],"original":[65],"more":[67],"concise":[68],"and":[69,81,124,134,160],"interpretable.":[70],"However,":[71],"it":[72],"challenging":[74],"balance":[76],"information":[83],"loss":[84],"during":[85],"process.":[88],"In":[89],"this":[90],"paper,":[91],"we":[92],"propose":[93],"use":[95],"entropy":[96,115,189],"benchmark":[103,199],"determine":[105],"for":[110],"first":[112],"time.":[113],"An":[114],"based":[116,150],"naive":[117],"unsupervised":[118],"approach":[120,171],"proposed":[123,153],"shows":[125],"big":[126],"advantages":[127],"in":[128],"terms":[129],"both":[131],"reduction":[133],"accuracy,":[135],"evaluated":[138],"by":[139],"performing":[140],"classifiers":[141,163],"dataset":[144],"whose":[145],"attributes":[147],"are":[148],"discretised":[149],"approach.":[154],"Our":[155],"experiments":[156],"28":[158],"datasets":[159],"9":[161],"popular":[162],"show":[164],"accuracy":[167,205],"largely":[174],"affected":[175],"when":[176],"lower":[186],"than":[187],"benchmark.":[190],"Meanwhile":[191],"increasing":[192],"from":[197],"does":[200],"not":[201],"always":[202],"improve":[203],"discretizer.":[208],"These":[209],"discoveries":[210],"provide":[212],"valuable":[213],"guidance":[214],"explore":[216],"or":[217],"optimise":[218],"approaches":[220],"attributes.":[226]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3007930867","counts_by_year":[],"updated_date":"2024-12-09T11:27:32.835110","created_date":"2020-03-06"}