{"id":"https://openalex.org/W2783655961","doi":"https://doi.org/10.1109/bigdata.2017.8258318","title":"Distributed memory parallel Markov random fields using graph partitioning","display_name":"Distributed memory parallel Markov random fields using graph partitioning","publication_year":2017,"publication_date":"2017-12-01","ids":{"openalex":"https://openalex.org/W2783655961","doi":"https://doi.org/10.1109/bigdata.2017.8258318","mag":"2783655961"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bigdata.2017.8258318","pdf_url":null,"source":{"id":"https://openalex.org/S4363607718","display_name":"2021 IEEE International Conference on Big Data (Big Data)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://escholarship.org/content/qt0g13f631/qt0g13f631.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5017260871","display_name":"Colleen Heinemann","orcid":null},"institutions":[{"id":"https://openalex.org/I148283060","display_name":"Lawrence Berkeley National Laboratory","ror":"https://ror.org/02jbv0t02","country_code":"US","type":"facility","lineage":["https://openalex.org/I1330989302","https://openalex.org/I148283060","https://openalex.org/I39565521"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"C. Heinemann","raw_affiliation_strings":["Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"],"affiliations":[{"raw_affiliation_string":"Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA","institution_ids":["https://openalex.org/I148283060"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059988741","display_name":"Talita Perciano","orcid":"https://orcid.org/0000-0002-2388-1803"},"institutions":[{"id":"https://openalex.org/I4210130392","display_name":"Research Applications (United States)","ror":"https://ror.org/02q2v3574","country_code":"US","type":"company","lineage":["https://openalex.org/I4210130392"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"T. Perciano","raw_affiliation_strings":["Cenier for Advanced Mathematics for Energy Research Applications (CAMERA), LBNL, Berkeley, CA, USA"],"affiliations":[{"raw_affiliation_string":"Cenier for Advanced Mathematics for Energy Research Applications (CAMERA), LBNL, Berkeley, CA, USA","institution_ids":["https://openalex.org/I4210130392"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050276927","display_name":"Daniela Ushizima","orcid":"https://orcid.org/0000-0002-7363-9468"},"institutions":[{"id":"https://openalex.org/I95457486","display_name":"University of California, Berkeley","ror":"https://ror.org/01an7q238","country_code":"US","type":"education","lineage":["https://openalex.org/I95457486"]},{"id":"https://openalex.org/I4210130392","display_name":"Research Applications (United States)","ror":"https://ror.org/02q2v3574","country_code":"US","type":"company","lineage":["https://openalex.org/I4210130392"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"D. Ushizima","raw_affiliation_strings":["Cenier for Advanced Mathematics for Energy Research Applications (CAMERA), LBNL, Berkeley, CA, USA","University of California, Berkeley, CA, USA"],"affiliations":[{"raw_affiliation_string":"University of California, Berkeley, CA, USA","institution_ids":["https://openalex.org/I95457486"]},{"raw_affiliation_string":"Cenier for Advanced Mathematics for Energy Research Applications (CAMERA), LBNL, Berkeley, CA, USA","institution_ids":["https://openalex.org/I4210130392"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5113461040","display_name":"E. Wes Bethel","orcid":null},"institutions":[{"id":"https://openalex.org/I148283060","display_name":"Lawrence Berkeley National Laboratory","ror":"https://ror.org/02jbv0t02","country_code":"US","type":"facility","lineage":["https://openalex.org/I1330989302","https://openalex.org/I148283060","https://openalex.org/I39565521"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"E. W. Bethel","raw_affiliation_strings":["Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"],"affiliations":[{"raw_affiliation_string":"Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA","institution_ids":["https://openalex.org/I148283060"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.18,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":3,"citation_normalized_percentile":{"value":0.323034,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"3332","last_page":"3341"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/markov-random-field","display_name":"Markov random field","score":0.5516204},{"id":"https://openalex.org/keywords/distributed-memory","display_name":"Distributed memory","score":0.5097992}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8713249},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.7643223},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.5656739},{"id":"https://openalex.org/C2778045648","wikidata":"https://www.wikidata.org/wiki/Q176827","display_name":"Markov random field","level":4,"score":0.5516204},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.5511722},{"id":"https://openalex.org/C98763669","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov chain","level":2,"score":0.54187953},{"id":"https://openalex.org/C91481028","wikidata":"https://www.wikidata.org/wiki/Q1054686","display_name":"Distributed memory","level":3,"score":0.5097992},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.47477672},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.45566314},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.42885417},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.42112958},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.41226855},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37670624},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3762605},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.31832415},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.31197828},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.29713643},{"id":"https://openalex.org/C133875982","wikidata":"https://www.wikidata.org/wiki/Q764810","display_name":"Shared memory","level":2,"score":0.27051675},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bigdata.2017.8258318","pdf_url":null,"source":{"id":"https://openalex.org/S4363607718","display_name":"2021 IEEE International Conference on Big Data (Big Data)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.osti.gov/biblio/1440002","pdf_url":"https://escholarship.org/content/qt0g13f631/qt0g13f631.pdf","source":{"id":"https://openalex.org/S4306402487","display_name":"OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I139351228","host_organization_name":"Office of Scientific and Technical Information","host_organization_lineage":["https://openalex.org/I139351228"],"host_organization_lineage_names":["Office of Scientific and Technical Information"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://escholarship.org/uc/item/0g13f631","pdf_url":"https://escholarship.org/content/qt0g13f631/qt0g13f631.pdf?t=p9l6rn","source":{"id":"https://openalex.org/S4306400115","display_name":"eScholarship (California Digital Library)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I2801248553","host_organization_name":"California Digital Library","host_organization_lineage":["https://openalex.org/I2801248553"],"host_organization_lineage_names":["California Digital Library"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://www.osti.gov/biblio/1440002","pdf_url":"https://escholarship.org/content/qt0g13f631/qt0g13f631.pdf","source":{"id":"https://openalex.org/S4306402487","display_name":"OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I139351228","host_organization_name":"Office of Scientific and Technical Information","host_organization_lineage":["https://openalex.org/I139351228"],"host_organization_lineage_names":["Office of Scientific and Technical Information"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure","score":0.44}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W125706094","https://openalex.org/W1461055456","https://openalex.org/W1506515136","https://openalex.org/W1546181482","https://openalex.org/W1590564964","https://openalex.org/W1651266332","https://openalex.org/W1972147563","https://openalex.org/W1974629471","https://openalex.org/W1992558052","https://openalex.org/W2016724224","https://openalex.org/W2025678883","https://openalex.org/W2030522583","https://openalex.org/W2034189153","https://openalex.org/W2058328643","https://openalex.org/W2080105297","https://openalex.org/W2082059038","https://openalex.org/W2101309634","https://openalex.org/W2105706220","https://openalex.org/W2114358147","https://openalex.org/W2134436132","https://openalex.org/W2143272559","https://openalex.org/W2148397114","https://openalex.org/W2168304982","https://openalex.org/W2301545354","https://openalex.org/W2479936045","https://openalex.org/W2516732370","https://openalex.org/W2580598422","https://openalex.org/W4297750044","https://openalex.org/W784166158"],"related_works":["https://openalex.org/W4233585817","https://openalex.org/W3207760230","https://openalex.org/W2188882668","https://openalex.org/W2088323302","https://openalex.org/W2083140487","https://openalex.org/W2016045932","https://openalex.org/W2004379491","https://openalex.org/W1998269854","https://openalex.org/W17155033","https://openalex.org/W1675950995"],"abstract_inverted_index":{"Markov":[0],"random":[1],"fields":[2],"(MRF)":[3],"based":[4],"algorithms":[5,55],"have":[6],"attracted":[7],"a":[8,47,71,83,128,135,160],"large":[9,57],"amount":[10,49],"of":[11,50,121,144,153,159,167,171,177],"interest":[12],"in":[13,46,180],"image":[14,53,90],"analysis":[15,91],"due":[16],"to":[17,20,34,44,56,62,67,74],"their":[18],"ability":[19],"exploit":[21],"contextual":[22],"information":[23,77],"about":[24],"data.":[25],"Image":[26],"data":[27,102],"generated":[28],"by":[29,100],"experimental":[30,116],"facilities,":[31],"though,":[32],"continues":[33],"grow":[35],"larger":[36],"and":[37,97,103,115,183],"more":[38,42],"complex,":[39],"making":[40],"it":[41],"difficult":[43],"analyze":[45],"reasonable":[48],"time.":[51],"Applying":[52],"processing":[54],"datasets":[58],"requires":[59],"alternative":[60],"approaches":[61],"circumvent":[63],"performance":[64,96,120,136,169],"problems.":[65],"Aiming":[66],"provide":[68],"scientists":[69],"with":[70,113],"new":[72],"tool":[73],"recover":[75],"valuable":[76],"from":[78],"such":[79],"datasets,":[80],"we":[81],"developed":[82],"general":[84],"purpose":[85],"distributed":[86,161],"memory":[87,98,162],"parallel":[88],"MRF-based":[89],"framework":[92,124],"(MPI-PMRF).":[93],"MPI-PMRF":[94,123],"overcomes":[95],"limitations":[99],"distributing":[101],"computations":[104],"across":[105],"processors.":[106],"The":[107,151],"proposed":[108,173],"approach":[109],"was":[110],"successfully":[111],"tested":[112],"synthetic":[114,182],"datasets.":[117,186],"Additionally,":[118],"the":[119,122,145,168,172],"is":[125,138],"analyzed":[126],"through":[127],"detailed":[129],"scalability":[130],"study.":[131],"We":[132],"show":[133],"that":[134],"increase":[137,170],"obtained":[139],"while":[140],"maintaining":[141],"an":[142],"accuracy":[143,179],"segmentation":[146,178],"results":[147],"higher":[148],"than":[149],"98%.":[150],"contributions":[152],"this":[154],"paper":[155],"are:":[156],"(a)":[157],"development":[158],"MRF":[163],"framework;":[164],"(b)":[165],"measurement":[166],"approach;":[174],"(c)":[175],"verification":[176],"both":[181],"experimental,":[184],"real-world":[185]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2783655961","counts_by_year":[{"year":2020,"cited_by_count":1},{"year":2018,"cited_by_count":2}],"updated_date":"2025-01-18T01:51:07.858374","created_date":"2018-01-26"}