{"id":"https://openalex.org/W4390971316","doi":"https://doi.org/10.1109/bibm58861.2023.10385262","title":"PatchBMI-Net: Lightweight Facial Patch-based Ensemble for BMI Prediction","display_name":"PatchBMI-Net: Lightweight Facial Patch-based Ensemble for BMI Prediction","publication_year":2023,"publication_date":"2023-12-05","ids":{"openalex":"https://openalex.org/W4390971316","doi":"https://doi.org/10.1109/bibm58861.2023.10385262"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bibm58861.2023.10385262","pdf_url":null,"source":{"id":"https://openalex.org/S4363607735","display_name":"2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2311.18102","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5083790083","display_name":"Parshuram N. Aarotale","orcid":"https://orcid.org/0000-0002-2361-3139"},"institutions":[{"id":"https://openalex.org/I39587148","display_name":"Wichita State University","ror":"https://ror.org/00c4e7y75","country_code":"US","type":"education","lineage":["https://openalex.org/I39587148"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Parshuram N. Aarotale","raw_affiliation_strings":["Dept. of Biomedical Engineering, Wichita State University, Kansas, USA"],"affiliations":[{"raw_affiliation_string":"Dept. of Biomedical Engineering, Wichita State University, Kansas, USA","institution_ids":["https://openalex.org/I39587148"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085117590","display_name":"Twyla J. Hill","orcid":null},"institutions":[{"id":"https://openalex.org/I39587148","display_name":"Wichita State University","ror":"https://ror.org/00c4e7y75","country_code":"US","type":"education","lineage":["https://openalex.org/I39587148"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Twyla Hill","raw_affiliation_strings":["Dept. of Sociology, Wichita State University, Kansas, USA"],"affiliations":[{"raw_affiliation_string":"Dept. of Sociology, Wichita State University, Kansas, USA","institution_ids":["https://openalex.org/I39587148"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5081904333","display_name":"Ajita Rattani","orcid":"https://orcid.org/0000-0002-1541-8202"},"institutions":[{"id":"https://openalex.org/I123534392","display_name":"University of North Texas","ror":"https://ror.org/00v97ad02","country_code":"US","type":"education","lineage":["https://openalex.org/I123534392"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ajita Rattani","raw_affiliation_strings":["Dept. of Computer Science and Engineering, Uni. of North Texas at Denton, Texas, USA"],"affiliations":[{"raw_affiliation_string":"Dept. of Computer Science and Engineering, Uni. of North Texas at Denton, Texas, USA","institution_ids":["https://openalex.org/I123534392"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":69},"biblio":{"volume":"7","issue":null,"first_page":"4022","last_page":"4028"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11446","display_name":"Mobile Health Interventions and Applications","score":0.9775,"subfield":{"id":"https://openalex.org/subfields/3600","display_name":"General Health Professions"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11446","display_name":"Mobile Health Interventions and Applications","score":0.9775,"subfield":{"id":"https://openalex.org/subfields/3600","display_name":"General Health Professions"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10667","display_name":"Emotion Recognition and Analysis in Multimodal Data","score":0.9672,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11448","display_name":"Face Recognition and Analysis Techniques","score":0.961,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ensemble-forecasting","display_name":"Ensemble forecasting","score":0.562522},{"id":"https://openalex.org/keywords/facial-landmark-detection","display_name":"Facial Landmark Detection","score":0.536218},{"id":"https://openalex.org/keywords/pose-estimation","display_name":"Pose Estimation","score":0.536026},{"id":"https://openalex.org/keywords/age-estimation","display_name":"Age Estimation","score":0.522164},{"id":"https://openalex.org/keywords/facial-expression-analysis","display_name":"Facial Expression Analysis","score":0.511053},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.503676}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7116834},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.7066196},{"id":"https://openalex.org/C105339364","wikidata":"https://www.wikidata.org/wiki/Q2297740","display_name":"Software deployment","level":2,"score":0.7048681},{"id":"https://openalex.org/C119898033","wikidata":"https://www.wikidata.org/wiki/Q3433888","display_name":"Ensemble forecasting","level":2,"score":0.562522},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.52421916},{"id":"https://openalex.org/C2779304628","wikidata":"https://www.wikidata.org/wiki/Q3503480","display_name":"Face (sociological concept)","level":2,"score":0.44611764},{"id":"https://openalex.org/C82876162","wikidata":"https://www.wikidata.org/wiki/Q17096504","display_name":"Latency (audio)","level":2,"score":0.42478454},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.42165416},{"id":"https://openalex.org/C111335779","wikidata":"https://www.wikidata.org/wiki/Q3454686","display_name":"Reduction (mathematics)","level":2,"score":0.41996318},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35693356},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.34937167},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.12574703},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10004747},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bibm58861.2023.10385262","pdf_url":null,"source":{"id":"https://openalex.org/S4363607735","display_name":"2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.18102","pdf_url":"https://arxiv.org/pdf/2311.18102","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.18102","pdf_url":"https://arxiv.org/pdf/2311.18102","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W2000647275","https://openalex.org/W2018006179","https://openalex.org/W2130352044","https://openalex.org/W2179609574","https://openalex.org/W2194775991","https://openalex.org/W2531409750","https://openalex.org/W2786753095","https://openalex.org/W2794386855","https://openalex.org/W2895871011","https://openalex.org/W2955425717","https://openalex.org/W2963281471","https://openalex.org/W2964512644","https://openalex.org/W2969263566","https://openalex.org/W3019006697","https://openalex.org/W3104792420","https://openalex.org/W3129358128","https://openalex.org/W3155914705","https://openalex.org/W3200626838","https://openalex.org/W3206198693","https://openalex.org/W3212366254","https://openalex.org/W4211040756","https://openalex.org/W4214680009","https://openalex.org/W4225785651","https://openalex.org/W4292794038","https://openalex.org/W4362683536","https://openalex.org/W4394650770"],"related_works":["https://openalex.org/W96612179","https://openalex.org/W632915154","https://openalex.org/W4256492088","https://openalex.org/W4229499248","https://openalex.org/W3022067003","https://openalex.org/W2987774938","https://openalex.org/W2770234245","https://openalex.org/W2566006169","https://openalex.org/W2055733372","https://openalex.org/W1567818861"],"abstract_inverted_index":{"Due":[0],"to":[1,6,85,98,109],"an":[2],"alarming":[3],"trend":[4],"related":[5],"obesity":[7],"affecting":[8],"93.3":[9],"million":[10,148],"adults":[11],"in":[12,28,137],"the":[13,73,111,138,175,183],"United":[14],"States":[15],"alone,":[16],"body":[17,22],"mass":[18],"index":[19],"(BMI)":[20],"and":[21,64,113,158,182,208],"weight":[23,46,91,114,209],"have":[24,36,50],"drawn":[25],"significant":[26],"interest":[27],"various":[29],"health":[30],"monitoring":[31,92,115,210],"applications.":[32,213],"Consequently,":[33],"several":[34],"studies":[35],"proposed":[37,128,168],"self-diagnostic":[38],"facial":[39,70,102,122,165],"image-based":[40],"BMI":[41,67,107,162],"prediction":[42,68,108,163],"methods":[43,49],"for":[44,66,106,161,205],"healthy":[45],"monitoring.":[47],"These":[48],"mostly":[51],"used":[52],"convolutional":[53],"neural":[54],"network":[55],"(CNN)":[56],"based":[57],"regression":[58],"baselines,":[59],"such":[60,155],"as":[61,156,200,202],"VGG19,":[62],"ResNet50,":[63],"EfficientNetB0,":[65],"from":[69,164],"images.":[71],"However,":[72],"high":[74],"computational":[75],"requirement":[76],"of":[77,145,179,188],"these":[78],"heavy-weight":[79],"CNN":[80],"models":[81],"limits":[82],"their":[83],"deployment":[84,112,207],"resource-constrained":[86],"mobile":[87],"devices,":[88],"thus":[89],"deterring":[90],"using":[93,116,211],"smartphones.":[94,117],"This":[95],"paper":[96],"aims":[97],"develop":[99],"a":[100,143],"lightweight":[101],"patch-based":[103],"ensemble":[104],"(PatchBMI-Net)":[105],"facilitate":[110],"Extensive":[118],"experiments":[119],"on":[120,193],"BMI-annotated":[121],"image":[123],"datasets":[124],"suggest":[125],"that":[126],"our":[127,167],"PatchBMI-Net":[129,169],"model":[130,176],"can":[131],"obtain":[132],"Mean":[133],"Absolute":[134],"Error":[135],"(MAE)":[136],"range":[139],"[3.58,":[140],"6.51]":[141],"with":[142,152,174],"size":[144,177],"about":[146,180,189],"3.3":[147],"parameters.":[149],"On":[150],"cross-comparison":[151],"heavyweight":[153],"models,":[154],"ResNet-50":[157],"Xception,":[159],"trained":[160],"images,":[166],"obtains":[170],"equivalent":[171],"MAE":[172],"along":[173],"reduction":[178,187],"5.4\u00d7":[181],"average":[184],"inference":[185],"time":[186],"3\u00d7":[190],"when":[191],"deployed":[192],"Apple-14":[194],"smartphone.":[195],"Thus,":[196],"demonstrating":[197],"performance":[198],"efficiency":[199],"well":[201],"low":[203],"latency":[204],"on-device":[206],"smartphone":[212]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390971316","counts_by_year":[],"updated_date":"2024-11-22T19:24:57.813375","created_date":"2024-01-19"}