{"id":"https://openalex.org/W4313525418","doi":"https://doi.org/10.1109/bibm55620.2022.9995659","title":"Identifying Variability in U.S. COVID-19 Response Through Temporal Partial Ordering Detection","display_name":"Identifying Variability in U.S. COVID-19 Response Through Temporal Partial Ordering Detection","publication_year":2022,"publication_date":"2022-12-06","ids":{"openalex":"https://openalex.org/W4313525418","doi":"https://doi.org/10.1109/bibm55620.2022.9995659"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bibm55620.2022.9995659","pdf_url":null,"source":{"id":"https://openalex.org/S4363607735","display_name":"2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103285162","display_name":"Jon Rogers","orcid":"https://orcid.org/0000-0001-5007-0443"},"institutions":[{"id":"https://openalex.org/I82495205","display_name":"University of Alabama in Huntsville","ror":"https://ror.org/02zsxwr40","country_code":"US","type":"funder","lineage":["https://openalex.org/I82495205"]},{"id":"https://openalex.org/I1306686416","display_name":"RTX (United States)","ror":"https://ror.org/0354t7b78","country_code":"US","type":"funder","lineage":["https://openalex.org/I1306686416"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jon Rogers","raw_affiliation_strings":["Raytheon Technologies, University of Alabama in Huntsville, Huntsville, AL, USA"],"affiliations":[{"raw_affiliation_string":"Raytheon Technologies, University of Alabama in Huntsville, Huntsville, AL, USA","institution_ids":["https://openalex.org/I82495205","https://openalex.org/I1306686416"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070184068","display_name":"Ramazan Ayg\u00fcn","orcid":"https://orcid.org/0000-0001-7244-7475"},"institutions":[{"id":"https://openalex.org/I172980758","display_name":"Kennesaw State University","ror":"https://ror.org/00jeqjx33","country_code":"US","type":"funder","lineage":["https://openalex.org/I172980758"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ramazan Aygun","raw_affiliation_strings":["Department of Computer Science, Kennesaw State University, Marietta, GA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Kennesaw State University, Marietta, GA, USA","institution_ids":["https://openalex.org/I172980758"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5036609407","display_name":"Letha H. Etzkorn","orcid":"https://orcid.org/0000-0003-3203-9236"},"institutions":[{"id":"https://openalex.org/I82495205","display_name":"University of Alabama in Huntsville","ror":"https://ror.org/02zsxwr40","country_code":"US","type":"funder","lineage":["https://openalex.org/I82495205"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Letha Etzkorn","raw_affiliation_strings":["Department of Computer Science, University of Alabama in Huntsville, Huntsville, AL, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, University of Alabama in Huntsville, Huntsville, AL, USA","institution_ids":["https://openalex.org/I82495205"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.781,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.773414,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":75},"biblio":{"volume":null,"issue":null,"first_page":"2266","last_page":"2273"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11819","display_name":"Data-Driven Disease Surveillance","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/2713","display_name":"Epidemiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11819","display_name":"Data-Driven Disease Surveillance","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/2713","display_name":"Epidemiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9811,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9763,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C3008058167","wikidata":"https://www.wikidata.org/wiki/Q84263196","display_name":"Coronavirus disease 2019 (COVID-19)","level":4,"score":0.65559983},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.52969486},{"id":"https://openalex.org/C3007834351","wikidata":"https://www.wikidata.org/wiki/Q82069695","display_name":"Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)","level":5,"score":0.4113404},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.35072818},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.12054816},{"id":"https://openalex.org/C2779134260","wikidata":"https://www.wikidata.org/wiki/Q12136","display_name":"Disease","level":2,"score":0.0},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.0},{"id":"https://openalex.org/C524204448","wikidata":"https://www.wikidata.org/wiki/Q788926","display_name":"Infectious disease (medical specialty)","level":3,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bibm55620.2022.9995659","pdf_url":null,"source":{"id":"https://openalex.org/S4363607735","display_name":"2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Good health and well-being","score":0.78,"id":"https://metadata.un.org/sdg/3"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1989980153","https://openalex.org/W2145015614","https://openalex.org/W2166988329","https://openalex.org/W2399361902","https://openalex.org/W2404544029","https://openalex.org/W2606267278","https://openalex.org/W2798649495","https://openalex.org/W2907754081","https://openalex.org/W3010302802","https://openalex.org/W3017154927","https://openalex.org/W3036799909","https://openalex.org/W3109484229","https://openalex.org/W3114232762","https://openalex.org/W3123876255","https://openalex.org/W3126232929","https://openalex.org/W3134742116","https://openalex.org/W3135257712","https://openalex.org/W4224135975","https://openalex.org/W4312354190"],"related_works":["https://openalex.org/W4292098121","https://openalex.org/W4224279380","https://openalex.org/W4210433452","https://openalex.org/W4206669628","https://openalex.org/W4206651655","https://openalex.org/W4206548596","https://openalex.org/W4205317059","https://openalex.org/W3176864053","https://openalex.org/W3084808338","https://openalex.org/W3036314732"],"abstract_inverted_index":{"We":[0,25,58,102],"gain":[1],"insight":[2],"to":[3,35,41,49,56],"the":[4,9,36,61,162,168,180],"COVID-19":[5,107],"pandemic":[6],"response":[7,22],"by":[8],"various":[10,52],"U.S.":[11,53,108],"states":[12,54],"through":[13,80,93],"analysis":[14],"of":[15,71,82,96,113,136,141,154,172],"open":[16],"source":[17],"emergency":[18],"declaration,":[19],"mitigation,":[20],"and":[21,44,67,120,127,138,147,156,175,178],"policy":[23,110,173],"data.":[24],"propose":[26],"ASNM":[27,63,130,146,148],"+":[28,78,131,149],"POD,":[29],"a":[30,106],"Partial":[31,87],"Ordering":[32],"Detection":[33],"extension":[34,76],"Adaptive":[37],"Sorted":[38],"Neighborhood":[39],"Method":[40],"identify":[42],"redundancies":[43],"implied":[45],"temporal":[46,84],"ordering":[47],"requirements":[48,89],"understand":[50],"how":[51],"respond":[55],"COVID-19.":[57],"further":[59],"strengthen":[60],"well-established":[62],"entity":[64],"matching":[65],"method":[66],"address":[68],"key":[69],"limitations":[70],"its":[72],"Longest":[73],"Common":[74],"Subsequence":[75],"(ASNM":[77],"LCS)":[79],"detection":[81],"all":[83,97],"order":[85,88],"requirements.":[86],"are":[90,125],"determined":[91],"probabilistically":[92],"empirical":[94],"review":[95],"records'":[98],"time-ordered":[99],"event":[100],"sequences.":[101],"demonstrate":[103],"effectiveness":[104],"against":[105],"state":[109],"dataset":[111],"comprised":[112],"daily":[114],"time-series":[115],"data":[116],"pulled":[117],"from":[118],"February":[119],"October":[121],"2022,":[122],"where":[123],"attributes":[124],"partially":[126],"variably":[128],"populated.":[129],"POD":[132],"yielded":[133],"an":[134,139],"F1":[135],"0.995":[137],"MCC":[140],"0.985,":[142],"significantly":[143],"outperforming":[144],"both":[145],"LCS":[150],"with":[151],"F1/MCC":[152],"improvements":[153],"22%/50%":[155],"15%/37%,":[157],"respectively.":[158],"Finally,":[159],"we":[160],"highlight":[161],"limited":[163],"consensus":[164],"on":[165],"policies":[166],"enacted,":[167],"variability":[169],"in":[170],"timelines":[171],"activations/deactivations,":[174],"activity":[176],"at":[177],"after":[179],"two-year":[181],"mark.":[182]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4313525418","counts_by_year":[{"year":2023,"cited_by_count":2}],"updated_date":"2025-04-20T22:43:36.418987","created_date":"2023-01-06"}