{"id":"https://openalex.org/W2914754444","doi":"https://doi.org/10.1109/bibm.2018.8621134","title":"Using deep neural network to recognize mutation entities in biomedical literature","display_name":"Using deep neural network to recognize mutation entities in biomedical literature","publication_year":2018,"publication_date":"2018-12-01","ids":{"openalex":"https://openalex.org/W2914754444","doi":"https://doi.org/10.1109/bibm.2018.8621134","mag":"2914754444"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bibm.2018.8621134","pdf_url":null,"source":{"id":"https://openalex.org/S4363607735","display_name":"2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101683944","display_name":"Fan Tong","orcid":"https://orcid.org/0000-0002-4588-8520"},"institutions":[{"id":"https://openalex.org/I2802541053","display_name":"Academy of Military Medical Sciences","ror":"https://ror.org/02bv3c993","country_code":"CN","type":"facility","lineage":["https://openalex.org/I2802541053"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fan Tong","raw_affiliation_strings":["Information Center Academy of Military Medical Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Information Center Academy of Military Medical Sciences, Beijing, China","institution_ids":["https://openalex.org/I2802541053"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070908607","display_name":"Zheheng Luo","orcid":null},"institutions":[{"id":"https://openalex.org/I2802541053","display_name":"Academy of Military Medical Sciences","ror":"https://ror.org/02bv3c993","country_code":"CN","type":"facility","lineage":["https://openalex.org/I2802541053"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zheheng Luo","raw_affiliation_strings":["Information Center Academy of Military Medical Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Information Center Academy of Military Medical Sciences, Beijing, China","institution_ids":["https://openalex.org/I2802541053"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5102751782","display_name":"Dongsheng Zhao","orcid":"https://orcid.org/0000-0003-2616-8891"},"institutions":[{"id":"https://openalex.org/I2802541053","display_name":"Academy of Military Medical Sciences","ror":"https://ror.org/02bv3c993","country_code":"CN","type":"facility","lineage":["https://openalex.org/I2802541053"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Dongsheng Zhao","raw_affiliation_strings":["Information Center Academy of Military Medical Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Information Center Academy of Military Medical Sciences, Beijing, China","institution_ids":["https://openalex.org/I2802541053"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.787,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.873024,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":80},"biblio":{"volume":null,"issue":null,"first_page":"2329","last_page":"2332"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11710","display_name":"Biomedical Text Mining and Ontologies","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T11710","display_name":"Biomedical Text Mining and Ontologies","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11642","display_name":"Genomics and Rare Diseases","score":0.9871,"subfield":{"id":"https://openalex.org/subfields/1311","display_name":"Genetics"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/concatenation","display_name":"Concatenation (mathematics)","score":0.7779366},{"id":"https://openalex.org/keywords/word-embedding","display_name":"Word embedding","score":0.5486792},{"id":"https://openalex.org/keywords/expression","display_name":"Expression (computer science)","score":0.4137848}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7932475},{"id":"https://openalex.org/C87619178","wikidata":"https://www.wikidata.org/wiki/Q126002","display_name":"Concatenation (mathematics)","level":2,"score":0.7779366},{"id":"https://openalex.org/C48145219","wikidata":"https://www.wikidata.org/wiki/Q1335365","display_name":"Security token","level":2,"score":0.6736021},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.60904056},{"id":"https://openalex.org/C501734568","wikidata":"https://www.wikidata.org/wiki/Q42918","display_name":"Mutation","level":3,"score":0.59637094},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.58883095},{"id":"https://openalex.org/C2777462759","wikidata":"https://www.wikidata.org/wiki/Q18395344","display_name":"Word embedding","level":3,"score":0.5486792},{"id":"https://openalex.org/C57273362","wikidata":"https://www.wikidata.org/wiki/Q576722","display_name":"Decoding methods","level":2,"score":0.5471174},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5326649},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4570849},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.43666357},{"id":"https://openalex.org/C25343380","wikidata":"https://www.wikidata.org/wiki/Q277521","display_name":"Relation (database)","level":2,"score":0.42760655},{"id":"https://openalex.org/C90559484","wikidata":"https://www.wikidata.org/wiki/Q778379","display_name":"Expression (computer science)","level":2,"score":0.4137848},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.37904233},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.3322059},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.23660356},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.17923099},{"id":"https://openalex.org/C94375191","wikidata":"https://www.wikidata.org/wiki/Q11205","display_name":"Arithmetic","level":1,"score":0.13138151},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.09727749},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.08069232},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.08037937},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bibm.2018.8621134","pdf_url":null,"source":{"id":"https://openalex.org/S4363607735","display_name":"2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Quality education","id":"https://metadata.un.org/sdg/4","score":0.51}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W1991133427","https://openalex.org/W2034137005","https://openalex.org/W2064675550","https://openalex.org/W2097771645","https://openalex.org/W2107878631","https://openalex.org/W2131285447","https://openalex.org/W2158743996","https://openalex.org/W2171374484","https://openalex.org/W2250539671","https://openalex.org/W2743028754","https://openalex.org/W2771737522","https://openalex.org/W2953320089"],"related_works":["https://openalex.org/W4387678054","https://openalex.org/W4306784355","https://openalex.org/W4286432911","https://openalex.org/W4221148444","https://openalex.org/W3134737443","https://openalex.org/W3095575180","https://openalex.org/W2944541365","https://openalex.org/W2911655849","https://openalex.org/W2389596151","https://openalex.org/W2373577936"],"abstract_inverted_index":{"Automatic":[0],"recognizing":[1],"mutation":[2,26,96,149,167],"mentions":[3,27,97],"plays":[4],"a":[5,67,92],"fundamental":[6],"and":[7,38,48,60,103,162],"critical":[8],"role":[9],"in":[10,33],"extracting":[11],"variant-disease":[12],"relation":[13],"from":[14,117],"biomedical":[15],"literature.":[16],"In":[17],"this":[18],"paper,":[19],"we":[20,50,82],"proposed":[21],"an":[22],"advanced":[23],"model":[24,170],"for":[25,65],"detection":[28],"by":[29,42,54],"using":[30,111],"deep":[31],"network":[32],"combination":[34],"with":[35],"decoding":[36],"algorithm":[37,124],"regular":[39,141],"expression.":[40],"Inspired":[41],"the":[43,80,108,121,129,148,157],"distributed":[44],"representation":[45],"of":[46,56,76,95,113,139,173],"words":[47],"characters,":[49],"divide":[51],"each":[52],"word":[53,114],"letters":[55],"difference":[57],"case,":[58],"numbers":[59],"special":[61],"characters":[62],"into":[63],"tokens":[64],"training":[66,116,161],"token":[68,118],"embedding":[69],"which":[70,151,175],"can":[71],"capture":[72,99],"some":[73],"nomenclature":[74],"features":[75],"mutations.":[77],"To":[78],"build":[79],"network,":[81],"implemented":[83],"Bi-directional":[84],"LSTM":[85],"(long":[86],"short-term":[87],"memory)":[88],"layers":[89,105],"to":[90,106,127,132,146,155],"learn":[91],"general":[93],"form":[94],"while":[98],"long-term":[100],"context":[101],"information":[102,154],"fully-connected":[104],"improve":[107],"fitting":[109],"capability,":[110],"concatenation":[112],"vectors":[115],"embeddings":[119],"as":[120],"input.":[122],"Viterbi":[123],"was":[125],"used":[126,145],"decode":[128],"previous":[130],"output":[131],"access":[133],"initial":[134,158],"labeled":[135],"sequence.":[136],"On":[137],"top":[138],"that,":[140],"expression":[142],"patterns":[143],"were":[144],"label":[147],"mentions,":[150],"provided":[152],"extra":[153],"optimize":[156],"output.":[159],"While":[160],"testing":[163],"on":[164],"NCBI":[165],"tmVar":[166],"corpus,":[168],"our":[169],"achieved":[171],"F-score":[172],"91.59%":[174],"performed":[176],"better":[177],"than":[178],"current":[179],"reported":[180],"systems.":[181]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2914754444","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2019,"cited_by_count":1}],"updated_date":"2025-01-19T10:54:29.127368","created_date":"2019-02-21"}