{"id":"https://openalex.org/W2212097589","doi":"https://doi.org/10.1109/bibm.2015.7359741","title":"Discovery of the relations between genetic polymorphism and adverse drug reactions","display_name":"Discovery of the relations between genetic polymorphism and adverse drug reactions","publication_year":2015,"publication_date":"2015-11-01","ids":{"openalex":"https://openalex.org/W2212097589","doi":"https://doi.org/10.1109/bibm.2015.7359741","mag":"2212097589"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bibm.2015.7359741","pdf_url":null,"source":{"id":"https://openalex.org/S4363607735","display_name":"2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004135809","display_name":"Zhaohui Liang","orcid":"https://orcid.org/0000-0002-9361-5535"},"institutions":[{"id":"https://openalex.org/I192455969","display_name":"York University","ror":"https://ror.org/05fq50484","country_code":"CA","type":"funder","lineage":["https://openalex.org/I192455969"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Zhaohui Liang","raw_affiliation_strings":["School of Information Technology, York University, Toronto, ON, Canada"],"affiliations":[{"raw_affiliation_string":"School of Information Technology, York University, Toronto, ON, Canada","institution_ids":["https://openalex.org/I192455969"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002570462","display_name":"Gang Zhang","orcid":"https://orcid.org/0000-0002-3998-4663"},"institutions":[{"id":"https://openalex.org/I139024713","display_name":"Guangdong University of Technology","ror":"https://ror.org/04azbjn80","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139024713"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Gang Zhang","raw_affiliation_strings":["School of Automation, Guangdong University of Technology, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Automation, Guangdong University of Technology, Guangzhou, China","institution_ids":["https://openalex.org/I139024713"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5000409439","display_name":"Jimmy Xiangji Huang","orcid":"https://orcid.org/0000-0003-1292-1491"},"institutions":[{"id":"https://openalex.org/I40963666","display_name":"Central China Normal University","ror":"https://ror.org/03x1jna21","country_code":"CN","type":"funder","lineage":["https://openalex.org/I40963666"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jimmy Xiangji Huang","raw_affiliation_strings":["School of Computer Science, Central China Normal University, Wuhan, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, Central China Normal University, Wuhan, China","institution_ids":["https://openalex.org/I40963666"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.262,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.384857,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":73,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"543","last_page":"548"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.9775,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.9775,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11710","display_name":"Biomedical Text Mining and Ontologies","score":0.9766,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10375","display_name":"Pharmacogenetics and Drug Metabolism","score":0.9685,"subfield":{"id":"https://openalex.org/subfields/3004","display_name":"Pharmacology"},"field":{"id":"https://openalex.org/fields/30","display_name":"Pharmacology, Toxicology and Pharmaceutics"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/drug-reaction","display_name":"Drug reaction","score":0.42330787},{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.42311046},{"id":"https://openalex.org/keywords/stationary-distribution","display_name":"Stationary distribution","score":0.42169788}],"concepts":[{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.68036807},{"id":"https://openalex.org/C98763669","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov chain","level":2,"score":0.67017144},{"id":"https://openalex.org/C18653775","wikidata":"https://www.wikidata.org/wiki/Q1333358","display_name":"Joint probability distribution","level":2,"score":0.52616113},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.49597916},{"id":"https://openalex.org/C86745063","wikidata":"https://www.wikidata.org/wiki/Q3737406","display_name":"CYP1A2","level":4,"score":0.46983454},{"id":"https://openalex.org/C33664856","wikidata":"https://www.wikidata.org/wiki/Q3271142","display_name":"CYP2D6","level":4,"score":0.43997997},{"id":"https://openalex.org/C2993432071","wikidata":"https://www.wikidata.org/wiki/Q45959","display_name":"Drug reaction","level":3,"score":0.42330787},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.42311046},{"id":"https://openalex.org/C51167844","wikidata":"https://www.wikidata.org/wiki/Q4422623","display_name":"Latent variable","level":2,"score":0.42271757},{"id":"https://openalex.org/C98951983","wikidata":"https://www.wikidata.org/wiki/Q7604341","display_name":"Stationary distribution","level":3,"score":0.42169788},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41559565},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41168705},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.3815987},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.32001394},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.24675149},{"id":"https://openalex.org/C2780035454","wikidata":"https://www.wikidata.org/wiki/Q8386","display_name":"Drug","level":2,"score":0.2406101},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.24039736},{"id":"https://openalex.org/C135763542","wikidata":"https://www.wikidata.org/wiki/Q106016","display_name":"Genotype","level":3,"score":0.22946894},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.21412182},{"id":"https://openalex.org/C98274493","wikidata":"https://www.wikidata.org/wiki/Q128406","display_name":"Pharmacology","level":1,"score":0.12314662},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.11637518},{"id":"https://openalex.org/C202751555","wikidata":"https://www.wikidata.org/wiki/Q221681","display_name":"In vitro","level":2,"score":0.0},{"id":"https://openalex.org/C87644729","wikidata":"https://www.wikidata.org/wiki/Q547502","display_name":"Microsome","level":3,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/bibm.2015.7359741","pdf_url":null,"source":{"id":"https://openalex.org/S4363607735","display_name":"2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W141818611","https://openalex.org/W1506806321","https://openalex.org/W1539100167","https://openalex.org/W1570879128","https://openalex.org/W1663973292","https://openalex.org/W1967376128","https://openalex.org/W1974339343","https://openalex.org/W1988331768","https://openalex.org/W1992264046","https://openalex.org/W1992746042","https://openalex.org/W1996323553","https://openalex.org/W2036228589","https://openalex.org/W2045135321","https://openalex.org/W2085074082","https://openalex.org/W2085235085","https://openalex.org/W2089390019","https://openalex.org/W2091313735","https://openalex.org/W2095569536","https://openalex.org/W2100495367","https://openalex.org/W2101303211","https://openalex.org/W2115763439","https://openalex.org/W2115791615","https://openalex.org/W2126398289","https://openalex.org/W2130325614","https://openalex.org/W2134842679","https://openalex.org/W2136189984","https://openalex.org/W2136922672","https://openalex.org/W2157063432","https://openalex.org/W2157867661","https://openalex.org/W2163636261","https://openalex.org/W2167433878","https://openalex.org/W2470393658","https://openalex.org/W2951446714","https://openalex.org/W2953267151","https://openalex.org/W2978839953","https://openalex.org/W4236758004"],"related_works":["https://openalex.org/W3115016480","https://openalex.org/W2470951184","https://openalex.org/W2375714429","https://openalex.org/W2360372628","https://openalex.org/W2352160667","https://openalex.org/W2260316268","https://openalex.org/W2070540904","https://openalex.org/W2048154776","https://openalex.org/W2032164227","https://openalex.org/W2027458054"],"abstract_inverted_index":{"The":[0,83,117,147],"genetic":[1,32,46,77],"polymorphism":[2],"of":[3,12,44,69,71,76,79,126],"Cytochrome":[4],"P450":[5],"(CYP":[6],"450)":[7],"is":[8,37,62,86,103,120,131,155],"considered":[9],"as":[10,56,108],"one":[11],"the":[13,25,31,42,45,66,74,80,106,123,127,142,152,159],"main":[14],"causes":[15],"for":[16,105],"adverse":[17],"drug":[18],"reactions":[19],"(ADRs).":[20],"In":[21],"order":[22],"to":[23,64,112,133],"explore":[24],"latent":[26],"correlations":[27],"between":[28],"ADRs":[29,72],"and":[30,52,54,73],"polymorphism,":[33],"a":[34,99,109,114,137],"new":[35,84],"model":[36,61],"proposed":[38,63],"in":[39],"which":[40],"both":[41],"inputs":[43],"locuses":[47],"(i.e.CYP2D6*2,":[48],"CYP2D6*10,":[49],"CYP2D6*14,":[50],"CYP1A2*1C":[51],"CYP1A2*1F)":[53],"occurrence":[55,70],"probabilistic":[57,115],"distribution.":[58,116],"A":[59,95],"generative":[60],"describe":[65],"joint":[67],"distributions":[68],"diversity":[75],"sub-types":[78],"input":[81],"variables.":[82],"algorithm":[85,154],"developed":[87],"based":[88],"on":[89,122],"Generative":[90],"Stochastic":[91],"Networks":[92],"(GSN)":[93],"model.":[94],"Markov":[96],"chain":[97,128],"from":[98],"training":[100],"data":[101],"set":[102],"applied":[104],"learning":[107,135],"transition":[110,118],"operator":[111],"simulate":[113],"distribution":[119],"conditional":[121],"previous":[124],"step":[125],"thus":[129],"it":[130],"able":[132],"perform":[134],"at":[136],"much":[138],"lower":[139],"cost":[140],"than":[141,158],"conventional":[143,161],"maximal":[144],"likelihood":[145],"method.":[146],"experiment":[148],"results":[149],"show":[150],"that":[151],"newly":[153],"more":[156],"effective":[157],"available":[160],"methods.":[162]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2212097589","counts_by_year":[{"year":2019,"cited_by_count":1},{"year":2016,"cited_by_count":1}],"updated_date":"2025-04-18T22:26:16.776398","created_date":"2016-06-24"}